In this paper,we investigate an inertial two-neural coupling system with multiple delays.We analyze the number of equilibrium points and demonstrate the corresponding pitchfork bifurcation.Results show that the system...In this paper,we investigate an inertial two-neural coupling system with multiple delays.We analyze the number of equilibrium points and demonstrate the corresponding pitchfork bifurcation.Results show that the system has a unique equilibrium as well as three equilibria for different values of coupling weights.The local asymptotic stability of the equilibrium point is studied using the corresponding characteristic equation.We find that multiple delays can induce the system to exhibit stable switching between the resting state and periodic motion.Stability regions with delay-dependence are exhibited in the parameter plane of the time delays employing the Hopf bifurcation curves.To obtain the global perspective of the system dynamics,stability and periodic activity involving multiple equilibria are investigated by analyzing the intersection points of the pitchfork and Hopf bifurcation curves,called the Bogdanov-Takens(BT)bifurcation.The homoclinic bifurcation and the fold bifurcation of limit cycle are obtained using the BT theoretical results of the third-order normal form.Finally,numerical simulations are provided to support the theoretical analyses.展开更多
Spinal cord injury is a devastating condition that is followed by long and often unsuccessful recovery after trauma. The state of the art approach to manage paralysis and concomitant impairments is rehabilitation, whi...Spinal cord injury is a devastating condition that is followed by long and often unsuccessful recovery after trauma. The state of the art approach to manage paralysis and concomitant impairments is rehabilitation, which is the only strategy that has proven to be effective and beneficial for the patients over the last decades. How rehabilitation influences the remodeling of spinal axonal connections in patients is important to understand, in order to better target these changes and define the optimal timing and onset of training. While clinically the answers to these questions remain difficult to obtain, rodent models of rehabilitation like bicycling, treadmill training, swimming, enriched environments or wheel running that mimic clinical rehabilitation can be helpful to reveal the axonal changes underlying motor recovery. This review will focus on the different animal models of spinal cord injury rehabilitation and the underlying changes in neuronal networks that are improved by exercise and rehabilitation.展开更多
针对常规径向基函数神经网络(radial basis function neural network,RBFNN)的逼近性能对网络结构和初始参数依赖性强的问题,采用最小资源分配网络进行改进,并与单神经元PID控制相结合,提出了一种基于最小资源分配网络的自适应PID控制...针对常规径向基函数神经网络(radial basis function neural network,RBFNN)的逼近性能对网络结构和初始参数依赖性强的问题,采用最小资源分配网络进行改进,并与单神经元PID控制相结合,提出了一种基于最小资源分配网络的自适应PID控制方法。该方法利用最小资源分配网络动态构建RBFNN,实现RBFNN结构和参数的在线优化,并用该RBFNN辨识对象的离散模型,然后由单神经元PID控制器完成PID参数的自适应整定。仿真结果表明,该方法中PID参数能够很好地适应系统输入信号的变化,对非线性系统控制效果较为理想。展开更多
Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signalin...Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signaling molecule to modulate cellular functions under pathophysiological conditions.The Astrocyte-Neuron Lactate Shuttle has cla rified that lactate plays a pivotal role in the central nervous system.Moreover,protein lactylation highlights the novel role of lactate in regulating transcription,cellular functions,and disease development.This review summarizes the recent advances in lactate metabolism and its role in neurodegenerative diseases,thus providing optimal pers pectives for future research.展开更多
An improved single-neuron proportional integral derivative ( PID ) controller and a new method to build the DC motor system were presented in the article. In the simulation, the robot arm is considered as an externa...An improved single-neuron proportional integral derivative ( PID ) controller and a new method to build the DC motor system were presented in the article. In the simulation, the robot arm is considered as an external load to DC motor. Both the motor module and the load module are crea- ted in Simulink to achieve simulation results closer to real robot system. In this way, it can well veri- fy the performance of the improved single-neuron PID controller, which is a combined controller of normal PID controller and single-neuron PID controller. Besides, an intelligent switcher can help to realize the function of choosing a better control algorithm according to motor' s velocity output. Sim- ulated results confirm the rapid and stable response of the improved PID controller. Moreover, the improved single-neuron PID controller has an excellent ability to overcome the load impact and su- press the jamming signals. At last, a GUI interface platform is built to make the controller easier to be applied in other robot systems.展开更多
In this paper, we address the problem of bifurcation control for a delayed neuron system. By introducing a new fractional-order Proportional-Derivative(PD) feedback controller, this paper aims to control the stability...In this paper, we address the problem of bifurcation control for a delayed neuron system. By introducing a new fractional-order Proportional-Derivative(PD) feedback controller, this paper aims to control the stability and Hopf bifurcation through adjusting the control gain parameters. The order chosen in PD controller is different with that of the integer-order neuron system. Sufficient conditions for guaranteeing the stability and generating Hopf bifurcation are constructed for the controlled neuron system. Finally,numerical simulation results are illustrated to verify our theoretical derivations and the relationships between the onset of the Hopf bifurcation and the gain parameters are obtained.展开更多
Mirror neuron system (MNS) represents one past decade, and it has been found to involve in multiple of the most important discoveries of cognitive neuroscience in the aspects of brain functions including action unde...Mirror neuron system (MNS) represents one past decade, and it has been found to involve in multiple of the most important discoveries of cognitive neuroscience in the aspects of brain functions including action understanding, imitation, language understanding, empathy, action prediction and speech evolution. This manuscript reviewed the function of MNS in action understanding as well as language evolution, and specifically assessed its roles as the bridge from body language to fluent speeches. Then we discussed the speech defects of autism patients due to the disruption of MNS. Finally, given that MNS is plastic in adult brain, we proposed MNS targeted therapy provides an efficient rehabilitation approach for brain damages conditions as well as autism patients.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11302126)the State Key Program of National Natural Science of China(Grant No.11032009)+1 种基金the Shanghai Leading Academic Discipline Project(Grant No.B302)Young Teacher Training Program of Colleges and Universities in Shanghai(Grant No.ZZhy12030)
文摘In this paper,we investigate an inertial two-neural coupling system with multiple delays.We analyze the number of equilibrium points and demonstrate the corresponding pitchfork bifurcation.Results show that the system has a unique equilibrium as well as three equilibria for different values of coupling weights.The local asymptotic stability of the equilibrium point is studied using the corresponding characteristic equation.We find that multiple delays can induce the system to exhibit stable switching between the resting state and periodic motion.Stability regions with delay-dependence are exhibited in the parameter plane of the time delays employing the Hopf bifurcation curves.To obtain the global perspective of the system dynamics,stability and periodic activity involving multiple equilibria are investigated by analyzing the intersection points of the pitchfork and Hopf bifurcation curves,called the Bogdanov-Takens(BT)bifurcation.The homoclinic bifurcation and the fold bifurcation of limit cycle are obtained using the BT theoretical results of the third-order normal form.Finally,numerical simulations are provided to support the theoretical analyses.
基金Work in FMB laboratory is supported by grants from the Deutsche Forschungsgemeinschaft(DFG,SFB870)by the Munich Center for Neurosciences(MCN)+2 种基金the Wings for Life foundationsupported by the Munich Center for Systems Neurology(DFG,SyNergyEXC 1010)
文摘Spinal cord injury is a devastating condition that is followed by long and often unsuccessful recovery after trauma. The state of the art approach to manage paralysis and concomitant impairments is rehabilitation, which is the only strategy that has proven to be effective and beneficial for the patients over the last decades. How rehabilitation influences the remodeling of spinal axonal connections in patients is important to understand, in order to better target these changes and define the optimal timing and onset of training. While clinically the answers to these questions remain difficult to obtain, rodent models of rehabilitation like bicycling, treadmill training, swimming, enriched environments or wheel running that mimic clinical rehabilitation can be helpful to reveal the axonal changes underlying motor recovery. This review will focus on the different animal models of spinal cord injury rehabilitation and the underlying changes in neuronal networks that are improved by exercise and rehabilitation.
文摘针对常规径向基函数神经网络(radial basis function neural network,RBFNN)的逼近性能对网络结构和初始参数依赖性强的问题,采用最小资源分配网络进行改进,并与单神经元PID控制相结合,提出了一种基于最小资源分配网络的自适应PID控制方法。该方法利用最小资源分配网络动态构建RBFNN,实现RBFNN结构和参数的在线优化,并用该RBFNN辨识对象的离散模型,然后由单神经元PID控制器完成PID参数的自适应整定。仿真结果表明,该方法中PID参数能够很好地适应系统输入信号的变化,对非线性系统控制效果较为理想。
基金supported by the National Natural Science Foundation of China,Nos.82230042 and 81930029(to ZY),U2004201(to FG and RYP)the China Postdoctoral Science Foundation,No.2020M683748(to RYP)。
文摘Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signaling molecule to modulate cellular functions under pathophysiological conditions.The Astrocyte-Neuron Lactate Shuttle has cla rified that lactate plays a pivotal role in the central nervous system.Moreover,protein lactylation highlights the novel role of lactate in regulating transcription,cellular functions,and disease development.This review summarizes the recent advances in lactate metabolism and its role in neurodegenerative diseases,thus providing optimal pers pectives for future research.
文摘An improved single-neuron proportional integral derivative ( PID ) controller and a new method to build the DC motor system were presented in the article. In the simulation, the robot arm is considered as an external load to DC motor. Both the motor module and the load module are crea- ted in Simulink to achieve simulation results closer to real robot system. In this way, it can well veri- fy the performance of the improved single-neuron PID controller, which is a combined controller of normal PID controller and single-neuron PID controller. Besides, an intelligent switcher can help to realize the function of choosing a better control algorithm according to motor' s velocity output. Sim- ulated results confirm the rapid and stable response of the improved PID controller. Moreover, the improved single-neuron PID controller has an excellent ability to overcome the load impact and su- press the jamming signals. At last, a GUI interface platform is built to make the controller easier to be applied in other robot systems.
基金supported by the National Natural Science Foundation of China(Grant Nos. 61573194, 51775284)the Natural Science Foundation of Jiangsu Province of China(Grant Nos. BK20181389, BK20171441)+1 种基金the Key Project of Philosophy and Social Science Research in Colleges and Universities in Jiangsu Province(Grant No. 2018SJZDI142)the Australian Research Council(Grant No. DP120104986)
文摘In this paper, we address the problem of bifurcation control for a delayed neuron system. By introducing a new fractional-order Proportional-Derivative(PD) feedback controller, this paper aims to control the stability and Hopf bifurcation through adjusting the control gain parameters. The order chosen in PD controller is different with that of the integer-order neuron system. Sufficient conditions for guaranteeing the stability and generating Hopf bifurcation are constructed for the controlled neuron system. Finally,numerical simulation results are illustrated to verify our theoretical derivations and the relationships between the onset of the Hopf bifurcation and the gain parameters are obtained.
基金Sci-ence Foundation of Ministry of Education of China (No.FBB011469)
文摘Mirror neuron system (MNS) represents one past decade, and it has been found to involve in multiple of the most important discoveries of cognitive neuroscience in the aspects of brain functions including action understanding, imitation, language understanding, empathy, action prediction and speech evolution. This manuscript reviewed the function of MNS in action understanding as well as language evolution, and specifically assessed its roles as the bridge from body language to fluent speeches. Then we discussed the speech defects of autism patients due to the disruption of MNS. Finally, given that MNS is plastic in adult brain, we proposed MNS targeted therapy provides an efficient rehabilitation approach for brain damages conditions as well as autism patients.