期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Distributed Cooperative Dynamic Task Planning Algorithm for Multiple Satellites Based on Multi-agent Hybrid Learning 被引量:14
1
作者 WANG Chong LI Jun JING Ning WANG Jun CHEN Hao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第4期493-505,共13页
Traditionally, heuristic re-planning algorithms are used to tackle the problem of dynamic task planning for multiple satellites. However, the traditional heuristic strategies depend on the concrete tasks, which often ... Traditionally, heuristic re-planning algorithms are used to tackle the problem of dynamic task planning for multiple satellites. However, the traditional heuristic strategies depend on the concrete tasks, which often affect the result’s optimality. Noticing that the historical information of cooperative task planning will impact the latter planning results, we propose a hybrid learning algorithm for dynamic multi-satellite task planning, which is based on the multi-agent reinforcement learning of policy iteration and the transfer learning. The reinforcement learning strategy of each satellite is described with neural networks. The policy neural network individuals with the best topological structure and weights are found by applying co-evolutionary search iteratively. To avoid the failure of the historical learning caused by the randomly occurring observation requests, a novel approach is proposed to balance the quality and efficiency of the task planning, which converts the historical learning strategy to the current initial learning strategy by applying the transfer learning algorithm. The simulations and analysis show the feasibility and adaptability of the proposed approach especially for the situation with randomly occurring observation requests. 展开更多
关键词 multiple satellites dynamic task planning problem multi-agent systems reinforcement learning neuroevolution of augmenting topologies transfer learning
原文传递
人工神经网络在临床医学中的应用 被引量:8
2
作者 张方圆 郁芸 +2 位作者 赵宇 杨坤 胡新华 《北京生物医学工程》 2016年第3期318-324,434,共7页
在临床疾病诊断与治疗等过程中,信息检测和分析等诸多方面都存在着复杂的非线性联系,而人工神经网络能有效地处理非线性问题,因此应用人工神经网络解决这些非线性问题具有特殊意义。近年来,人工神经网络在医学领域的研究工作取得了一定... 在临床疾病诊断与治疗等过程中,信息检测和分析等诸多方面都存在着复杂的非线性联系,而人工神经网络能有效地处理非线性问题,因此应用人工神经网络解决这些非线性问题具有特殊意义。近年来,人工神经网络在医学领域的研究工作取得了一定进展,并在疾病诊断、疾病预后、医学影像处理、临床决策分析方面得到广泛的应用。其在疾病诊断中多用于对肿瘤等病症的早期判断,在医学影像中多用于影像资料的辨识及病症初步诊断,在疾病预后中多用于生存期的预估与疾病发展的判断,在临床决策分析中常用于个体化诊疗。 展开更多
关键词 人工神经网络 诊断 预测 概率神经网络 网络拓扑增强技术
下载PDF
基于增强拓扑神经演化强化学习的水面无人艇局部路径规划 被引量:7
3
作者 王宝仁 韩婷婷 王凯 《科学技术与工程》 北大核心 2020年第15期6107-6112,共6页
针对水面无人艇(unmanned surface vessel, USV)在复杂环境下的局部路径规划问题,对USV路径规划问题进行了数学建模,提出了基于增强拓扑神经演化(neuroevolution of augmenting topologies, NEAT)算法的局部路径规划方法;设计了神经网... 针对水面无人艇(unmanned surface vessel, USV)在复杂环境下的局部路径规划问题,对USV路径规划问题进行了数学建模,提出了基于增强拓扑神经演化(neuroevolution of augmenting topologies, NEAT)算法的局部路径规划方法;设计了神经网络初始结构和演化参数,对初始神经网络结构进行演化实现避障及到达指定目标的路径规划任务;通过设计适应度函数,实现路径点数目的优化。仿真结果表明:利用NEAT算法演化神经网络的方法能够使USV在复杂的环境中准确避开障碍物并到达目标点,且在路径点数目和鲁棒性方面优于传统的模糊逻辑算法与人工势场算法。 展开更多
关键词 水面无人艇 局部路径规划 增强拓扑神经演化 强化学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部