MicroRNAs play important roles in post-transcriptional regulation of gene expression by inhibiting protein translation and/or promoting mRNA degradation.Importantly,biogenesis of microRNAs displays specific temporal a...MicroRNAs play important roles in post-transcriptional regulation of gene expression by inhibiting protein translation and/or promoting mRNA degradation.Importantly,biogenesis of microRNAs displays specific temporal and spatial profiles in distinct cell and tissue types and hence affects a broad spectrum of biological functions in normal cell growth and tumor development.Recent discoveries have revealed sophisticated mechanisms that control microRNA production and homeostasis in response to developmental and extracellular signals.Moreover,a link between dysregulation of microRNAs and human brain disorders has become increasingly evident.In this review,we focus on recent advances in understanding the regulation of microRNA biogenesis and function in neuronal and glial development in the mammalian brain,and dysregulation of the microRNA pathway in neurodevelopmental and neurodegenerative diseases.展开更多
In the last few years, there have been important new insights into the structural biology of G-protein coupled receptors. It is now known that allosteric binding sites are involved in the affinity and selec- tivity of...In the last few years, there have been important new insights into the structural biology of G-protein coupled receptors. It is now known that allosteric binding sites are involved in the affinity and selec- tivity of ligands for G-protein coupled receptors, and that signaling by these receptors involves both G-protein dependent and independent pathways. The present review outlines the physiological and pharmacological implications of this perspective for the design of new drugs to treat disorders of the central nervous system. Specifically, new possibilities are explored in relation to allosteric and or- thosteric binding sites on dopamine receptors for the treatment of Parkinson's disease, and on muscarinic receptors for Alzheimer's disease. Future research can seek to identify ligands that can bind to more than one site on the same receptor, or simultaneously bind to two receptors and form a dimer. For example, the design of bivalent drugs that can reach homo/hetero-dimers of D2 dopa- mine receptor holds promise as a relevant therapeutic strategy for Parkinson's disease. Regarding the treatment of Alzheimer's disease, the design of dualsteric ligands for mono-oligomeric mus- carinic receptors could increase therapeutic effectiveness by generating potent compounds that could activate more than one signaling pathway.展开更多
文摘MicroRNAs play important roles in post-transcriptional regulation of gene expression by inhibiting protein translation and/or promoting mRNA degradation.Importantly,biogenesis of microRNAs displays specific temporal and spatial profiles in distinct cell and tissue types and hence affects a broad spectrum of biological functions in normal cell growth and tumor development.Recent discoveries have revealed sophisticated mechanisms that control microRNA production and homeostasis in response to developmental and extracellular signals.Moreover,a link between dysregulation of microRNAs and human brain disorders has become increasingly evident.In this review,we focus on recent advances in understanding the regulation of microRNA biogenesis and function in neuronal and glial development in the mammalian brain,and dysregulation of the microRNA pathway in neurodevelopmental and neurodegenerative diseases.
基金supported by SIP-IPN,CONACYT (CB-168116)FIS/IMSS (FIS/IMSS/PROT/G11-2/1013)
文摘In the last few years, there have been important new insights into the structural biology of G-protein coupled receptors. It is now known that allosteric binding sites are involved in the affinity and selec- tivity of ligands for G-protein coupled receptors, and that signaling by these receptors involves both G-protein dependent and independent pathways. The present review outlines the physiological and pharmacological implications of this perspective for the design of new drugs to treat disorders of the central nervous system. Specifically, new possibilities are explored in relation to allosteric and or- thosteric binding sites on dopamine receptors for the treatment of Parkinson's disease, and on muscarinic receptors for Alzheimer's disease. Future research can seek to identify ligands that can bind to more than one site on the same receptor, or simultaneously bind to two receptors and form a dimer. For example, the design of bivalent drugs that can reach homo/hetero-dimers of D2 dopa- mine receptor holds promise as a relevant therapeutic strategy for Parkinson's disease. Regarding the treatment of Alzheimer's disease, the design of dualsteric ligands for mono-oligomeric mus- carinic receptors could increase therapeutic effectiveness by generating potent compounds that could activate more than one signaling pathway.