Studies have shown that mesenchymal stem cell-derived exosomes can enhance neural plasticity and improve cognitive impairment.The purpose of this study was to investigate the effects of mesenchymal stem cell-derived e...Studies have shown that mesenchymal stem cell-derived exosomes can enhance neural plasticity and improve cognitive impairment.The purpose of this study was to investigate the effects of mesenchymal stem cell-derived exosomes on neurogenesis and cognitive capacity in a mouse model of Alzheimer’s disease.Alzheimer’s disease mouse models were established by injection of beta amyloid 1?42 aggregates into dentate gyrus bilaterally.Morris water maze and novel object recognition tests were performed to evaluate mouse cognitive deficits at 14 and 28 days after administration.Afterwards,neurogenesis in the subventricular zone was determined by immunofluorescence using doublecortin and PSA-NCAM antibodies.Results showed that mesenchymal stem cells-derived exosomes stimulated neurogenesis in the subventricular zone and alleviated beta amyloid 1?42-induced cognitive impairment,and these effects are similar to those shown in the mesenchymal stem cells.These findings provide evidence to validate the possibility of developing cell-free therapeutic strategies for Alzheimer’s disease.All procedures and experiments were approved by Institutional Animal Care and Use Committee(CICUAL)(approval No.CICUAL 2016-011)on April 25,2016.展开更多
Acupuncture has been shown to ameliorate cognitive impairment of Alzheimer’s disease.Acupoints and stimulation frequency influence the therapeutic effect of electroacupuncture.Rat models of Alzheimer’s disease were ...Acupuncture has been shown to ameliorate cognitive impairment of Alzheimer’s disease.Acupoints and stimulation frequency influence the therapeutic effect of electroacupuncture.Rat models of Alzheimer’s disease were established by injecting amyloid beta 1–42(Aβ_(1–42))into the bilateral lateral ventricles.Electroacupuncture at 2,30,and 50 Hz was carried out at Baihui(GV20;15°obliquely to a depth of 2mm)and Shenshu(BL23;perpendicularly to 4–6 mm depth),once a day for 20 minutes(each),for 15 days,taking a break every 7 days.The Morris water maze test was conducted to assess the learning and memory.The expression levels of glycogen synthase kinase-3β(GSK-3β),p Ser9-GSK-3β,p Tyr216-GSK-3β,amyloid precursor protein and Aβ_(1–40) in the hippocampus were determined by western blot assay.Results demonstrated that electroacupuncture treatment at different frequencies markedly improved learning and memory ability,increased synaptic curvatures,decreased the width of synaptic clefts,thickened postsynaptic densities,and downregulated the expression of GSK-3β,amyloid precursor protein,and Aβ_(1–40).pSer9-GSK-3βexpression markedly decreased,while p Tyr216-GSK-3βexpression increased.High-frequency(50 Hz)electroacupuncture was more effective than low(2 Hz)or medium-frequency(30 Hz)electroacupuncture.In conclusion,electroacupuncture treatment exerts a protective effect against Aβ_(1–42)-induced learning and memory deficits and synapse-ultrastructure impairment via inhibition of GSK-3βactivity.Moreover,high-frequency electroacupuncture was the most effective therapy.展开更多
The Xingnao Jieyu capsule has been shown to effectively relieve neurologic impairments and les- sen depression. It remains poorly understood whether this capsule can be used to treat post-stroke depression. Thus, in t...The Xingnao Jieyu capsule has been shown to effectively relieve neurologic impairments and les- sen depression. It remains poorly understood whether this capsule can be used to treat post-stroke depression. Thus, in the present study, we established a rat model of post-stroke depression using left middle cerebral artery occlusions in combination of chronic unpredictable stress and solitary housing during development. Experimental rats received intragastric perfusion with 0.82, 0.41, and 0.20 g/kg Xingnao Jieyu capsules separately dissolved in 2 mL distilled water. Fluoxetine served as a positive control. The treatment was conducted over 28 days. Sugar water consumption test, open-field test, real-time fluorescent quantitative PCR and immunohistochemical staining results demonstrated that intragastric perfusion with various doses of Xingnao Jieyu capsules increased sugar water consumption, voluntary behaviors and synaptotagmin mRNA and protein expression in rats with post-stroke depression. These therapeutic effects were similar to those of fluoxetine. These results indicate that Xingnao Jieyu capsules upregulate synaptotagmin expression in hip pocampi of rats with post-stroke depression, and exert antidepressant effects.展开更多
This study established an aged rat model of cognitive dysfunction using anesthesia with 2% iso- flurane and 80% oxygen for 2 hours. Twenty-four hours later, Y-maze test results showed that isoflurane significantly imp...This study established an aged rat model of cognitive dysfunction using anesthesia with 2% iso- flurane and 80% oxygen for 2 hours. Twenty-four hours later, Y-maze test results showed that isoflurane significantly impaired cognitive function in aged rats. Gas chromatography-mass spectrometry results showed that isoflurane also significantly increased the levels of N,N-diethy- lacetamide, n-ethylacetamide, aspartic acid, malic acid and arabinonic acid in the hippocampus of isoflurane-treated rats. Moreover, aspartic acid, N,N-diethylacetamide, n-ethylacetamide and malic acid concentration was positively correlated with the degree of cognitive dysfunction in the isoflurane-treated rats. It is evident that hippocampal metabolite changes are involved in the formation of cognitive dysfunction after isoflurane anesthesia. To further verify these results, this study cultured hippocampal neurons in vitro, which were then treated with aspartic acid (100 μmol/L). Results suggested that aspartic acid concentration in the hippocampus may be a biomarker for predicting the occurrence and disease progress of cognitive dysfunction.展开更多
The Rho/Rho-kinase signaling pathway plays an important role in cerebral ischemia/reperfusion injury. However, very few studies have examined in detail the changes in the Rho/Rho-kinase signaling pathway in chronic ce...The Rho/Rho-kinase signaling pathway plays an important role in cerebral ischemia/reperfusion injury. However, very few studies have examined in detail the changes in the Rho/Rho-kinase signaling pathway in chronic cerebral ischemia. In this study, rat models of chronic cerebral ischemia were established by permanent bilateral common carotid artery occlusion and intra- gastrically administered 9 mg/kg fasudil, a powerful ROCK inhibitor, for 9 weeks. Morris water maze results showed that cognitive impairment progressively worsened as the cerebral ischemia proceeded. Immunohistochemistry, semi-quantitative RT-PCR and western blot analysis showed that the expression levels of Rho-kinase, its substrate myosin-binding subunit, and its relat- ed protein alpha smooth muscle actin, significantly increased after chronic cerebral ischemia. TUNEL staining showed that chronic cerebral ischemia could lead to an increase in neuronal apoptosis, as well as the expression level of caspase-3 in the frontal cortex of rats subjected to chronic cerebral ischemia. Fasudil treatment alleviated the cognitive impairment in rats with chronic cerebral ischemia, and decreased the expression level of Rho-kinase, myosin-binding subunit and alpha smooth muscle actin. Furthermore, fasudil could regulate cerebral injury by reducing cell apoptosis and decreasing caspase-3 expression in the frontal cortex. These findings demonstrate that fasudil can protect against cognitive impairment induced by chronic cerebral ischemia via the Rho/Rho-kinase signaling pathway and anti-apoptosis mechanism.展开更多
Dendrobium nobile Lindl.alkaloids(DNLA),the active ingredients of a traditional Chinese medicine Dendrobium,have been shown to have anti-oxidative effects,anti-inflammatory action,and protective effect on neurons ag...Dendrobium nobile Lindl.alkaloids(DNLA),the active ingredients of a traditional Chinese medicine Dendrobium,have been shown to have anti-oxidative effects,anti-inflammatory action,and protective effect on neurons against oxygen-glucose deprivation.However,it is not clear whether DNLA reduces amyloid-beta(Aβ)-induced neuronal injury.In this study,cortical neurons were treated with DNLA at different concentrations(0.025,0.25,and 2.5 mg/L)for 24 hours,followed by administration of Aβ(25-35)(10μM).Aβ(25-35) treatments increased cell injury as determined by the leakage of lactate dehydrogenase,which was accompanied by chromatin condensation and mitochondrial tumefaction.The damage caused by Aβ(25-35) on these cellular properties was markedly attenuated when cells were pretreated with DNLA.Treatment with Aβ(25-35)down-regulated the expressions of postsynaptic density-95 mRNA and decreased the protein expression of synaptophysin and postsynaptic density-95,all changes were significantly reduced by pretreatment of cells with DNLA.These findings suggest that DNLA reduces the cytotoxicity induced by Aβ(25-35) in rat primary cultured neurons.The protective mechanism that DNLA confers on the synaptic integrity of cultured neurons might be mediated,at least in part,through the upregulation of neurogenesis related proteins synaptophysin and postsynaptic density-95.展开更多
Mild cognitive impairment(MCI)is a precursor to Alzheimer’s disease.It is imperative to develop a proper treatment for this neurological disease in the aging society.This observational study investigated the effects ...Mild cognitive impairment(MCI)is a precursor to Alzheimer’s disease.It is imperative to develop a proper treatment for this neurological disease in the aging society.This observational study investigated the effects of acupuncture therapy on MCI patients.Eleven healthy individuals and eleven MCI patients were recruited for this study.Oxy-and deoxy-hemoglobin signals in the prefrontal cortex during working-memory tasks were monitored using functional near-infrared spectroscopy.Before acupuncture treatment,working-memory experiments were conducted for healthy control(HC)and MCI groups(MCI-0),followed by 24 sessions of acupuncture for the MCI group.The acupuncture sessions were initially carried out for 6 weeks(two sessions per week),after which experiments were performed again on the MCI group(MCI-1).This was followed by another set of acupuncture sessions that also lasted for 6 weeks,after which the experiments were repeated on the MCI group(MCI-2).Statistical analyses of the signals and classifications based on activation maps as well as temporal features were performed.The highest classification accuracies obtained using binary connectivity maps were 85.7%HC vs.MCI-0,69.5%HC vs.MCI-1,and 61.69%HC vs.MCI-2.The classification accuracies using the temporal features mean from 5 seconds to 28 seconds and maximum(i.e,max(5:28 seconds))values were 60.6%HC vs.MCI-0,56.9%HC vs.MCI-1,and 56.4%HC vs.MCI-2.The results reveal that there was a change in the temporal characteristics of the hemodynamic response of MCI patients due to acupuncture.This was reflected by a reduction in the classification accuracy after the therapy,indicating that the patients’brain responses improved and became comparable to those of healthy subjects.A similar trend was reflected in the classification using the image feature.These results indicate that acupuncture can be used for the treatment of MCI patients.展开更多
The content of total flavonoids in an extract of Ginkgo biloba, called GBE50, is 44% by weight. This is significantly greater than that in a standard extract of Ginkgo biloba, designated EGB761. To date, the mechanism...The content of total flavonoids in an extract of Ginkgo biloba, called GBE50, is 44% by weight. This is significantly greater than that in a standard extract of Ginkgo biloba, designated EGB761. To date, the mechanisms by which GBE50 and EGB761 function remain poorly understood. In the present study, an experimental rat model of aging was induced by intraperitoneal injection of D-galactose, followed by intragastric perfusion of GBE50 (30, 60 mg/kg), or EGB761 (60 mg/kg). The water maze scores and hippocampal CA1 synaptic plasticity were evaluated. In the place navigation test, the GBE50 group rats did better than EGB761, while similar scores were obtained in the spatial probe test, and in the platform-switched test. In addition, long-term potentiation was significantly enhanced following high-frequency stimulation in the GBE50 and EGB761 groups, compared with the model group. These results demonstrate that GBE50 and EGB761 improved the learning and memory of aging rats. In particular, GBE50 administered at the 60 mg/kg dose exhibited superior effects over EGB761 at the same 60 mg/kg dose. Furthermore, the enhancement of hippocampal synaptic plasticity may be an underlying mechanism.展开更多
Hypoxiainducible factor1 and its specific target gene heme oxygenase1, are involved in acute cerebral ischemia. However, very few studies have examined in detail the changes in the hy poxiainducible factor1/heme oxyge...Hypoxiainducible factor1 and its specific target gene heme oxygenase1, are involved in acute cerebral ischemia. However, very few studies have examined in detail the changes in the hy poxiainducible factor1/heme oxygenase1 signaling pathway in chronic cerebral ischemia. In this study, a rat model of chronic cerebral ischemia was established by permanent bilateral common carotid artery occlusion, and these rats were treated with intragastric cilostazol (30 mg/kg) for 9 weeks. Morris water maze results showed that cognitive impairment gradually worsened as the cerebral ischemia proceeded. Immunohistochemistry, semiquantitative PCR and western blot analysis showed that hypoxiainducible factorla and heme oxygenase1 expression levels in creased after chronic cerebral ischemia, with hypoxiainducible factorla expression peaking at 3 weeks and heme oxygenase1 expression peaking at 6 weeks. These results suggest that the elevated levels of hypoxiainducible factorla may upregulate heine oxygenase1 expression fol lowing chronic cerebral ischemia and that the hypoxiainducible factor1/heme oxygenase1 sig naling pathway is involved in the development of cognitive impairment induced by chronic cerebral ischemia. Cilostazol treatment alleviated the cognitive impairment in rats with chronic cerebral ischemia, decreased hypoxiainducible factorla and heme oxygenase1 expression levels, and reduced apoptosis in the frontal cortex. These findings demonstrate that cilostazol can protect against cognitive impairment induced by chronic cerebral ischemic injury through an antiapoptotic mechanism.展开更多
The rat high-impact free weight drop model mimics the diffuse axonal injury caused by severe traumatic brain injury in humans,while severe controlled cortical impact can produce a severe traumatic brain injury model u...The rat high-impact free weight drop model mimics the diffuse axonal injury caused by severe traumatic brain injury in humans,while severe controlled cortical impact can produce a severe traumatic brain injury model using precise strike parameters.In this study,we compare the pathological mechanisms and pathological changes between two rat severe brain injury models to identify the similarities and differences.The severe controlled cortical impact model was produced by an electronic controlled cortical impact device,while the severe free weight drop model was produced by dropping a 500 g free weight from a height of 1.8 m through a plastic tube.Body temperature and mortality were recorded,and neurological deficits were assessed with the modified neurological severity score.Brain edema and bloodbrain barrier damage were evaluated by assessing brain water content and Evans blue extravasation.In addition,a cytokine array kit was used to detect inflammatory cytokines.Neuronal apoptosis in the brain and brainstem was quantified by immunofluorescence staining.Both the severe controlled cortical impact and severe free weight drop models exhibited significant neurological impairments and body temperature fluctuations.More severe motor dysfunction was observed in the severe controlled cortical impact model,while more severe cognitive dysfunction was observed in the severe free weight drop model.Brain edema,inflammatory cytokine changes and cortical neuronal apoptosis were more substantial and blood-brain barrier damage was more focal in the severe controlled cortical impact group compared with the severe free weight drop group.The severe free weight drop model presented with more significant apoptosis in the brainstem and diffused blood-brain barrier damage,with higher mortality and lower repeatability compared with the severe controlled cortical impact group.Severe brainstem damage was not found in the severe controlled cortical impact model.These results indicate that the severe controlled cortical impact model is relat展开更多
Purpose:This study aimed to non-invasively test the hypothesis that(a) short-term lower limb unloading would induce changes in the neural control of force production(based on motor units(MUs) properties) in the vastus...Purpose:This study aimed to non-invasively test the hypothesis that(a) short-term lower limb unloading would induce changes in the neural control of force production(based on motor units(MUs) properties) in the vastus lateralis muscle and(b) possible changes are reversed by active recovery(AR).Methods:Ten young males underwent 10 days of unilateral lower limb suspension(ULLS) followed by 21 days of AR.During ULLS,participants walked exclusively on crutches with the dominant leg suspended in a slightly flexed position(15°-20°) and with the contralateral foot raised by an elevated shoe.The AR was based on resistance exercise(leg press and leg extension) and executed at 70% of each participant’s 1repetition maximum,3 times/week.Maximal voluntary isometric contraction(MVC) of knee extensors and MUs properties of the vastus lateralis muscle were measured at baseline,after ULLS,and after AR.MUs were identified using high-density electromyography during trapezoidal isometric contractions at 10%,25%,and 50% of the current MVC,and individual MUs were tracked across the 3 data collection points.Results:We identified 1428 unique MUs,and 270 of them(18.9%) were accurately tracked.After ULLS,MVC decreased by 29.77%,MUs absolute recruitment/derecruitment thresholds were reduced at all contraction intensities(with changes between the 2 variables strongly correlated),while discharge rate was reduced at 10% and 25% but not at 50% MVC.Impaired MVC and MUs properties fully recovered to baseline levels after AR.Similar changes were observed in the pool of total as well as tracked MUs.Conclusion:Our novel results demonstrate,non-invasively,that 10 days of ULLS affected neural control predominantly by altering the discharge rate of lower-threshold but not of higher-threshold MUs,suggesting a preferential impact of disuse on motoneurons with a lower depolarization threshold.However,after 21 days of AR,the impaired MUs properties were fully restored to baseline levels,highlighting the plasticity of the components involved in neural 展开更多
The cingulum,connecting the orbitofrontal cortex to the medial temporal lobe,involves in diverse cognition functions including attention,memory,and motivation.To investigate the relationship between the cingulum injur...The cingulum,connecting the orbitofrontal cortex to the medial temporal lobe,involves in diverse cognition functions including attention,memory,and motivation.To investigate the relationship between the cingulum injury and cognitive impairment in patients with chronic mild traumatic brain injury,we evaluated the integrity between the anterior cingulum and the basal forebrain using diffusion tensor tractography in 73 patients with chronic mild traumatic brain injury(39 males,34 females,age 43.29±11.42 years)and 40 healthy controls(22 males,18 females,age 40.11±16.81 years).The patients were divided into three subgroups based on the integrity between the anterior cingulum and the basal forebrain on diffusion tensor tractography:subgroup A(n=19 patients)– both sides of the anterior cingulum were intact;subgroup B(n=36 patients)– either side of the anterior cingulum was intact;and subgroup C(18 patients)– both sides of the anterior cingulum were discontinued.There were significant differences in total Memory Assessment Scale score between subgroups A and B and between subgroups A and C.There were no significant differences in diffusion tensor tractography parameters(fractional anisotropy,apparent diffusion coefficient,and fiber volume)between patients and controls.These findings suggest that the integrity between the anterior cingulum and the basal forebrain,but not diffusion tensor tractography parameter,can be used to predict the cognitive function of patients with chronic mild traumatic brain injury.This study was approved by Yeungnam University Hospital Institutional Review Board(approval No.YUMC-2014-01-425-010)on August 16,2017.展开更多
The α5 subunit-containing gamma-amino butyric acid type A receptors(α5 GABAARs) are a distinct subpopulation that are specifically distributed in the mammalian hippocampus and also mediate tonic inhibitory currents ...The α5 subunit-containing gamma-amino butyric acid type A receptors(α5 GABAARs) are a distinct subpopulation that are specifically distributed in the mammalian hippocampus and also mediate tonic inhibitory currents in hippocampal neurons. These tonic currents can be enhanced by low-dose isoflurane, which is associated with learning and memory impairment. Inverse agonists of α5 GABAARs, such as L-655,708, are able to reverse the short-term memory deficit caused by low-dose isoflurane in young animals. However, whether these negative allosteric modulators have the same effects on aged rats remains unclear. In the present study, we mainly investigated the effects of L-655,708 on low-dose(1.3%) isoflurane-induced learning and memory impairment in elderly rats. Young(3-month-old) and aged(24-month-old) Wistar rats were randomly assigned to receive L-655,708 0.5 hour before or 23.5 hours after 1.3% isoflurane anesthesia.The Morris Water Maze tests demonstrated that L-655,708 injected before or after anesthesia could reverse the memory deficit in young rats. But in aged rats, application of L-655,708 only before anesthesia showed similar effects. Reverse transcription-polymerase chain reaction showed that low-dose isoflurane decreased the mRNA expression of α5 GABAARs in aging hippocampal neurons but increased that in young animals. These findings indicate that L-655,708 prevented but could not reverse 1.3% isoflurane-induced spatial learning and memory impairment in aged Wistar rats. All experimental procedures and protocols were approved by the Experimental Animal Ethics Committee of Academy of Military Medical Science of China(approval No. NBCDSER-IACUC-2015128) in December 2015.展开更多
Cataract is the leading cause of visual impairment globally.The scarcity and uneven distribution of ophthalmologists seriously hinder early visual impairment grading for cataract patients in the clin-ic.In this study,...Cataract is the leading cause of visual impairment globally.The scarcity and uneven distribution of ophthalmologists seriously hinder early visual impairment grading for cataract patients in the clin-ic.In this study,a deep learning-based automated grading system of visual impairment in cataract patients is proposed using a multi-scale efficient channel attention convolutional neural network(MECA_CNN).First,the efficient channel attention mechanism is applied in the MECA_CNN to extract multi-scale features of fundus images,which can effectively focus on lesion-related regions.Then,the asymmetric convolutional modules are embedded in the residual unit to reduce the infor-mation loss of fine-grained features in fundus images.In addition,the asymmetric loss function is applied to address the problem of a higher false-negative rate and weak generalization ability caused by the imbalanced dataset.A total of 7299 fundus images derived from two clinical centers are em-ployed to develop and evaluate the MECA_CNN for identifying mild visual impairment caused by cataract(MVICC),moderate to severe visual impairment caused by cataract(MSVICC),and nor-mal sample.The experimental results demonstrate that the MECA_CNN provides clinically meaning-ful performance for visual impairment grading in the internal test dataset:MVICC(accuracy,sensi-tivity,and specificity;91.3%,89.9%,and 92%),MSVICC(93.2%,78.5%,and 96.7%),and normal sample(98.1%,98.0%,and 98.1%).The comparable performance in the external test dataset is achieved,further verifying the effectiveness and generalizability of the MECA_CNN model.This study provides a deep learning-based practical system for the automated grading of visu-al impairment in cataract patients,facilitating the formulation of treatment strategies in a timely man-ner and improving patients’vision prognosis.展开更多
Survivors of sepsis may suffer chronic cognitive impairment as a long-term sequela. However, the precise mechanisms of cognitive dys- function after sepsis are not well understood. We employed the cecal ligation-and-p...Survivors of sepsis may suffer chronic cognitive impairment as a long-term sequela. However, the precise mechanisms of cognitive dys- function after sepsis are not well understood. We employed the cecal ligation-and-puncture-induced septic mouse model. We observed elevated phosphorylation of Akt, mammalian target of rapamycin (roTOR) and p70S6K on days 14 and 60, progressive neuronal loss in the cornu ammonis 1 region, and abnormal neuronal morphology in the hippocampus in the sepsis mouse model, These findings indicate that changes in neuronal morphology and number in the hippocampus after sepsis were associated with strong activation of the Akt/mTOR sig- naling pathway, and may reflect a "self-rescuing" feedback response to neuronal loss after sepsis.展开更多
Based on previous studies that have shown flavonoids from the stems and leaves of Scutellaria baicalensis Georgi are neuroprotective agents in a naturally senile, D-galactose, aging in vivo model, as well as an in vit...Based on previous studies that have shown flavonoids from the stems and leaves of Scutellaria baicalensis Georgi are neuroprotective agents in a naturally senile, D-galactose, aging in vivo model, as well as an in vitro model of oxidative/hypoxic injury, we established a cerebral ischemia/reperfusion model in rats by middle cerebral artery occlusion. The light/electron microscopic observations found significant neuropathological changes including neuron loss or swelling and rough endoplasmic reticulum injury. Moreover, the activities of lactate dehydrogenase Na+-K+-ATPase, Ca2+-ATPase and superoxide dismutase were significantly lowered, and the levels of malonaldehyde increased. In addition, the memory of rats worsened. However, treatment with flavonoids from Scutellaria baicalensis Georgi (35, 70 and 140 mg/kg) for 13 days dramatically improved the above abnormal changes. These results suggest that the ability of flavonoids from Scutellaria baicalensis Georgi in attenuating cerebral functional and morphological consequences after cerebral ischemia/reperfusion may be beneficial for the treatment of ischemic brain disease.展开更多
Damage to synaptic plasticity induced by neurotoxicity of amyloid-beta is regarded to be one of the pathological mechanisms of learning and memory disabilities in Alzheimer's disease patients. This study assumed that...Damage to synaptic plasticity induced by neurotoxicity of amyloid-beta is regarded to be one of the pathological mechanisms of learning and memory disabilities in Alzheimer's disease patients. This study assumed that the damage of amyloid-beta to learning and memory abilities was strongly associated with the changes in the Fyn/N-methyl-D-aspartate receptor 2B (NR2B) expression. An APP695V7171 transgenic mouse model of Alzheimer's disease was used and treatment with tetrahydroxy-stilbene glucoside was administered intragas- trically. Results showed that intragastric administration of tetrahydroxy-stilbene glucoside improved the learning and memory abilities of the transgenic mice through increasing NR2B receptors and Fyn expression. It also reversed parameters for synaptic interface structure of gray type I. These findings indicate that tetrahydroxy stilbene glucoside has protective effects on the brain, and has prospects for its clinical application to improve the learning and memory abilities and treat Alzheimer's disease.展开更多
We report a case of a 21-year-old man who had severe traumatic brain injury as a result of an accident at the age of 16 years. Two years and 4 months after the trauma, at the age of 19 years, he still had severe right...We report a case of a 21-year-old man who had severe traumatic brain injury as a result of an accident at the age of 16 years. Two years and 4 months after the trauma, at the age of 19 years, he still had severe right hemiplegia and cognitive dysfunction including aphasia and attention and memory disturbance. Conventional rehabilitation programs cou(d not resolve all of the neuropsychological problems. He started receiving Goshinjo therapy over a period of 22 months. Following the therapy, significant improvements in verbal intelligence quotient (assessed by the Wechsler Adult Intelligence Scale-Third Edition) and attention and concentration function (using the Wechsler Memory Scale-Revised), and remission of traumatic epilepsy were observed. Goshinjo therapy is suspected to be effective in the treatment of cognitive dysfunction in the chronic stage after severe traumatic brain injury.展开更多
基金sponsored by CONACYT scholarship#487713Fondo Mixto de Ciencia y Tecnología del Estado de Jalisco grant JAL-2014-0-250508
文摘Studies have shown that mesenchymal stem cell-derived exosomes can enhance neural plasticity and improve cognitive impairment.The purpose of this study was to investigate the effects of mesenchymal stem cell-derived exosomes on neurogenesis and cognitive capacity in a mouse model of Alzheimer’s disease.Alzheimer’s disease mouse models were established by injection of beta amyloid 1?42 aggregates into dentate gyrus bilaterally.Morris water maze and novel object recognition tests were performed to evaluate mouse cognitive deficits at 14 and 28 days after administration.Afterwards,neurogenesis in the subventricular zone was determined by immunofluorescence using doublecortin and PSA-NCAM antibodies.Results showed that mesenchymal stem cells-derived exosomes stimulated neurogenesis in the subventricular zone and alleviated beta amyloid 1?42-induced cognitive impairment,and these effects are similar to those shown in the mesenchymal stem cells.These findings provide evidence to validate the possibility of developing cell-free therapeutic strategies for Alzheimer’s disease.All procedures and experiments were approved by Institutional Animal Care and Use Committee(CICUAL)(approval No.CICUAL 2016-011)on April 25,2016.
基金supported by the National Natural Science Foundation of China,No.81373741a grant from the Chinese Medicine and Integrated Medicine Research Projects funded by the Health and Family Planning Commission of Hubei Province of China,No.24a grant from the Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion of China in 2014,No.8
文摘Acupuncture has been shown to ameliorate cognitive impairment of Alzheimer’s disease.Acupoints and stimulation frequency influence the therapeutic effect of electroacupuncture.Rat models of Alzheimer’s disease were established by injecting amyloid beta 1–42(Aβ_(1–42))into the bilateral lateral ventricles.Electroacupuncture at 2,30,and 50 Hz was carried out at Baihui(GV20;15°obliquely to a depth of 2mm)and Shenshu(BL23;perpendicularly to 4–6 mm depth),once a day for 20 minutes(each),for 15 days,taking a break every 7 days.The Morris water maze test was conducted to assess the learning and memory.The expression levels of glycogen synthase kinase-3β(GSK-3β),p Ser9-GSK-3β,p Tyr216-GSK-3β,amyloid precursor protein and Aβ_(1–40) in the hippocampus were determined by western blot assay.Results demonstrated that electroacupuncture treatment at different frequencies markedly improved learning and memory ability,increased synaptic curvatures,decreased the width of synaptic clefts,thickened postsynaptic densities,and downregulated the expression of GSK-3β,amyloid precursor protein,and Aβ_(1–40).pSer9-GSK-3βexpression markedly decreased,while p Tyr216-GSK-3βexpression increased.High-frequency(50 Hz)electroacupuncture was more effective than low(2 Hz)or medium-frequency(30 Hz)electroacupuncture.In conclusion,electroacupuncture treatment exerts a protective effect against Aβ_(1–42)-induced learning and memory deficits and synapse-ultrastructure impairment via inhibition of GSK-3βactivity.Moreover,high-frequency electroacupuncture was the most effective therapy.
基金funded by the Key Science and Technology Project of Shaanxi Provincial "13115"Technology Innovation Engineering,No.2010ZDKG-65
文摘The Xingnao Jieyu capsule has been shown to effectively relieve neurologic impairments and les- sen depression. It remains poorly understood whether this capsule can be used to treat post-stroke depression. Thus, in the present study, we established a rat model of post-stroke depression using left middle cerebral artery occlusions in combination of chronic unpredictable stress and solitary housing during development. Experimental rats received intragastric perfusion with 0.82, 0.41, and 0.20 g/kg Xingnao Jieyu capsules separately dissolved in 2 mL distilled water. Fluoxetine served as a positive control. The treatment was conducted over 28 days. Sugar water consumption test, open-field test, real-time fluorescent quantitative PCR and immunohistochemical staining results demonstrated that intragastric perfusion with various doses of Xingnao Jieyu capsules increased sugar water consumption, voluntary behaviors and synaptotagmin mRNA and protein expression in rats with post-stroke depression. These therapeutic effects were similar to those of fluoxetine. These results indicate that Xingnao Jieyu capsules upregulate synaptotagmin expression in hip pocampi of rats with post-stroke depression, and exert antidepressant effects.
基金supported by the National Natural Science Foundation of China,No.30871306
文摘This study established an aged rat model of cognitive dysfunction using anesthesia with 2% iso- flurane and 80% oxygen for 2 hours. Twenty-four hours later, Y-maze test results showed that isoflurane significantly impaired cognitive function in aged rats. Gas chromatography-mass spectrometry results showed that isoflurane also significantly increased the levels of N,N-diethy- lacetamide, n-ethylacetamide, aspartic acid, malic acid and arabinonic acid in the hippocampus of isoflurane-treated rats. Moreover, aspartic acid, N,N-diethylacetamide, n-ethylacetamide and malic acid concentration was positively correlated with the degree of cognitive dysfunction in the isoflurane-treated rats. It is evident that hippocampal metabolite changes are involved in the formation of cognitive dysfunction after isoflurane anesthesia. To further verify these results, this study cultured hippocampal neurons in vitro, which were then treated with aspartic acid (100 μmol/L). Results suggested that aspartic acid concentration in the hippocampus may be a biomarker for predicting the occurrence and disease progress of cognitive dysfunction.
基金supported by the Natural Science Foundation of Jilin Province of China,No.200705272,20140414028GH
文摘The Rho/Rho-kinase signaling pathway plays an important role in cerebral ischemia/reperfusion injury. However, very few studies have examined in detail the changes in the Rho/Rho-kinase signaling pathway in chronic cerebral ischemia. In this study, rat models of chronic cerebral ischemia were established by permanent bilateral common carotid artery occlusion and intra- gastrically administered 9 mg/kg fasudil, a powerful ROCK inhibitor, for 9 weeks. Morris water maze results showed that cognitive impairment progressively worsened as the cerebral ischemia proceeded. Immunohistochemistry, semi-quantitative RT-PCR and western blot analysis showed that the expression levels of Rho-kinase, its substrate myosin-binding subunit, and its relat- ed protein alpha smooth muscle actin, significantly increased after chronic cerebral ischemia. TUNEL staining showed that chronic cerebral ischemia could lead to an increase in neuronal apoptosis, as well as the expression level of caspase-3 in the frontal cortex of rats subjected to chronic cerebral ischemia. Fasudil treatment alleviated the cognitive impairment in rats with chronic cerebral ischemia, and decreased the expression level of Rho-kinase, myosin-binding subunit and alpha smooth muscle actin. Furthermore, fasudil could regulate cerebral injury by reducing cell apoptosis and decreasing caspase-3 expression in the frontal cortex. These findings demonstrate that fasudil can protect against cognitive impairment induced by chronic cerebral ischemia via the Rho/Rho-kinase signaling pathway and anti-apoptosis mechanism.
基金financially supported by the National Natural Science Foundation of China,No.81473201the Natural Science Foundation of Educational Commission of Guizhou Province of China,No.2010043+1 种基金the Science and Technology Foundation of Guizhou Province of China,No.JZ[2014]2016the Modernization of Traditional Chinese Medicine Project of Guizhou Province of China,No.[2011]5086
文摘Dendrobium nobile Lindl.alkaloids(DNLA),the active ingredients of a traditional Chinese medicine Dendrobium,have been shown to have anti-oxidative effects,anti-inflammatory action,and protective effect on neurons against oxygen-glucose deprivation.However,it is not clear whether DNLA reduces amyloid-beta(Aβ)-induced neuronal injury.In this study,cortical neurons were treated with DNLA at different concentrations(0.025,0.25,and 2.5 mg/L)for 24 hours,followed by administration of Aβ(25-35)(10μM).Aβ(25-35) treatments increased cell injury as determined by the leakage of lactate dehydrogenase,which was accompanied by chromatin condensation and mitochondrial tumefaction.The damage caused by Aβ(25-35) on these cellular properties was markedly attenuated when cells were pretreated with DNLA.Treatment with Aβ(25-35)down-regulated the expressions of postsynaptic density-95 mRNA and decreased the protein expression of synaptophysin and postsynaptic density-95,all changes were significantly reduced by pretreatment of cells with DNLA.These findings suggest that DNLA reduces the cytotoxicity induced by Aβ(25-35) in rat primary cultured neurons.The protective mechanism that DNLA confers on the synaptic integrity of cultured neurons might be mediated,at least in part,through the upregulation of neurogenesis related proteins synaptophysin and postsynaptic density-95.
基金supported by National Research Foundation(NRF)of Korea under the auspices of the Ministry of Science and ICT,Republic of Korea(No.NRF-2020R1A2B5B03096000,to KSH).
文摘Mild cognitive impairment(MCI)is a precursor to Alzheimer’s disease.It is imperative to develop a proper treatment for this neurological disease in the aging society.This observational study investigated the effects of acupuncture therapy on MCI patients.Eleven healthy individuals and eleven MCI patients were recruited for this study.Oxy-and deoxy-hemoglobin signals in the prefrontal cortex during working-memory tasks were monitored using functional near-infrared spectroscopy.Before acupuncture treatment,working-memory experiments were conducted for healthy control(HC)and MCI groups(MCI-0),followed by 24 sessions of acupuncture for the MCI group.The acupuncture sessions were initially carried out for 6 weeks(two sessions per week),after which experiments were performed again on the MCI group(MCI-1).This was followed by another set of acupuncture sessions that also lasted for 6 weeks,after which the experiments were repeated on the MCI group(MCI-2).Statistical analyses of the signals and classifications based on activation maps as well as temporal features were performed.The highest classification accuracies obtained using binary connectivity maps were 85.7%HC vs.MCI-0,69.5%HC vs.MCI-1,and 61.69%HC vs.MCI-2.The classification accuracies using the temporal features mean from 5 seconds to 28 seconds and maximum(i.e,max(5:28 seconds))values were 60.6%HC vs.MCI-0,56.9%HC vs.MCI-1,and 56.4%HC vs.MCI-2.The results reveal that there was a change in the temporal characteristics of the hemodynamic response of MCI patients due to acupuncture.This was reflected by a reduction in the classification accuracy after the therapy,indicating that the patients’brain responses improved and became comparable to those of healthy subjects.A similar trend was reflected in the classification using the image feature.These results indicate that acupuncture can be used for the treatment of MCI patients.
基金the Scientific Research Program of the Shanghai Science and Technology Commission,No.09ZR1432100the Key Subject Construction Program of Shanghai Education Commission,No.J50301the Scientific Research Innovation Program of Shanghai Education Commission,No.08YZ59
文摘The content of total flavonoids in an extract of Ginkgo biloba, called GBE50, is 44% by weight. This is significantly greater than that in a standard extract of Ginkgo biloba, designated EGB761. To date, the mechanisms by which GBE50 and EGB761 function remain poorly understood. In the present study, an experimental rat model of aging was induced by intraperitoneal injection of D-galactose, followed by intragastric perfusion of GBE50 (30, 60 mg/kg), or EGB761 (60 mg/kg). The water maze scores and hippocampal CA1 synaptic plasticity were evaluated. In the place navigation test, the GBE50 group rats did better than EGB761, while similar scores were obtained in the spatial probe test, and in the platform-switched test. In addition, long-term potentiation was significantly enhanced following high-frequency stimulation in the GBE50 and EGB761 groups, compared with the model group. These results demonstrate that GBE50 and EGB761 improved the learning and memory of aging rats. In particular, GBE50 administered at the 60 mg/kg dose exhibited superior effects over EGB761 at the same 60 mg/kg dose. Furthermore, the enhancement of hippocampal synaptic plasticity may be an underlying mechanism.
基金supported by the Natural Science Fundation of Jilin Province in China, No.200705272
文摘Hypoxiainducible factor1 and its specific target gene heme oxygenase1, are involved in acute cerebral ischemia. However, very few studies have examined in detail the changes in the hy poxiainducible factor1/heme oxygenase1 signaling pathway in chronic cerebral ischemia. In this study, a rat model of chronic cerebral ischemia was established by permanent bilateral common carotid artery occlusion, and these rats were treated with intragastric cilostazol (30 mg/kg) for 9 weeks. Morris water maze results showed that cognitive impairment gradually worsened as the cerebral ischemia proceeded. Immunohistochemistry, semiquantitative PCR and western blot analysis showed that hypoxiainducible factorla and heme oxygenase1 expression levels in creased after chronic cerebral ischemia, with hypoxiainducible factorla expression peaking at 3 weeks and heme oxygenase1 expression peaking at 6 weeks. These results suggest that the elevated levels of hypoxiainducible factorla may upregulate heine oxygenase1 expression fol lowing chronic cerebral ischemia and that the hypoxiainducible factor1/heme oxygenase1 sig naling pathway is involved in the development of cognitive impairment induced by chronic cerebral ischemia. Cilostazol treatment alleviated the cognitive impairment in rats with chronic cerebral ischemia, decreased hypoxiainducible factorla and heme oxygenase1 expression levels, and reduced apoptosis in the frontal cortex. These findings demonstrate that cilostazol can protect against cognitive impairment induced by chronic cerebral ischemic injury through an antiapoptotic mechanism.
基金supported by the National Natural Science Foundation of China,No.81671221(to RCJ)
文摘The rat high-impact free weight drop model mimics the diffuse axonal injury caused by severe traumatic brain injury in humans,while severe controlled cortical impact can produce a severe traumatic brain injury model using precise strike parameters.In this study,we compare the pathological mechanisms and pathological changes between two rat severe brain injury models to identify the similarities and differences.The severe controlled cortical impact model was produced by an electronic controlled cortical impact device,while the severe free weight drop model was produced by dropping a 500 g free weight from a height of 1.8 m through a plastic tube.Body temperature and mortality were recorded,and neurological deficits were assessed with the modified neurological severity score.Brain edema and bloodbrain barrier damage were evaluated by assessing brain water content and Evans blue extravasation.In addition,a cytokine array kit was used to detect inflammatory cytokines.Neuronal apoptosis in the brain and brainstem was quantified by immunofluorescence staining.Both the severe controlled cortical impact and severe free weight drop models exhibited significant neurological impairments and body temperature fluctuations.More severe motor dysfunction was observed in the severe controlled cortical impact model,while more severe cognitive dysfunction was observed in the severe free weight drop model.Brain edema,inflammatory cytokine changes and cortical neuronal apoptosis were more substantial and blood-brain barrier damage was more focal in the severe controlled cortical impact group compared with the severe free weight drop group.The severe free weight drop model presented with more significant apoptosis in the brainstem and diffused blood-brain barrier damage,with higher mortality and lower repeatability compared with the severe controlled cortical impact group.Severe brainstem damage was not found in the severe controlled cortical impact model.These results indicate that the severe controlled cortical impact model is relat
基金funded by the Italian Space Agency, MARcatori biologici e funzionali per la biomeccanica aStronautica di PREcisione (Project number DC-VUM-2017-006)。
文摘Purpose:This study aimed to non-invasively test the hypothesis that(a) short-term lower limb unloading would induce changes in the neural control of force production(based on motor units(MUs) properties) in the vastus lateralis muscle and(b) possible changes are reversed by active recovery(AR).Methods:Ten young males underwent 10 days of unilateral lower limb suspension(ULLS) followed by 21 days of AR.During ULLS,participants walked exclusively on crutches with the dominant leg suspended in a slightly flexed position(15°-20°) and with the contralateral foot raised by an elevated shoe.The AR was based on resistance exercise(leg press and leg extension) and executed at 70% of each participant’s 1repetition maximum,3 times/week.Maximal voluntary isometric contraction(MVC) of knee extensors and MUs properties of the vastus lateralis muscle were measured at baseline,after ULLS,and after AR.MUs were identified using high-density electromyography during trapezoidal isometric contractions at 10%,25%,and 50% of the current MVC,and individual MUs were tracked across the 3 data collection points.Results:We identified 1428 unique MUs,and 270 of them(18.9%) were accurately tracked.After ULLS,MVC decreased by 29.77%,MUs absolute recruitment/derecruitment thresholds were reduced at all contraction intensities(with changes between the 2 variables strongly correlated),while discharge rate was reduced at 10% and 25% but not at 50% MVC.Impaired MVC and MUs properties fully recovered to baseline levels after AR.Similar changes were observed in the pool of total as well as tracked MUs.Conclusion:Our novel results demonstrate,non-invasively,that 10 days of ULLS affected neural control predominantly by altering the discharge rate of lower-threshold but not of higher-threshold MUs,suggesting a preferential impact of disuse on motoneurons with a lower depolarization threshold.However,after 21 days of AR,the impaired MUs properties were fully restored to baseline levels,highlighting the plasticity of the components involved in neural
基金supported by the Medical Research Center Program(2015R1A5A2009124)through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning(to SHJ and SHK)
文摘The cingulum,connecting the orbitofrontal cortex to the medial temporal lobe,involves in diverse cognition functions including attention,memory,and motivation.To investigate the relationship between the cingulum injury and cognitive impairment in patients with chronic mild traumatic brain injury,we evaluated the integrity between the anterior cingulum and the basal forebrain using diffusion tensor tractography in 73 patients with chronic mild traumatic brain injury(39 males,34 females,age 43.29±11.42 years)and 40 healthy controls(22 males,18 females,age 40.11±16.81 years).The patients were divided into three subgroups based on the integrity between the anterior cingulum and the basal forebrain on diffusion tensor tractography:subgroup A(n=19 patients)– both sides of the anterior cingulum were intact;subgroup B(n=36 patients)– either side of the anterior cingulum was intact;and subgroup C(18 patients)– both sides of the anterior cingulum were discontinued.There were significant differences in total Memory Assessment Scale score between subgroups A and B and between subgroups A and C.There were no significant differences in diffusion tensor tractography parameters(fractional anisotropy,apparent diffusion coefficient,and fiber volume)between patients and controls.These findings suggest that the integrity between the anterior cingulum and the basal forebrain,but not diffusion tensor tractography parameter,can be used to predict the cognitive function of patients with chronic mild traumatic brain injury.This study was approved by Yeungnam University Hospital Institutional Review Board(approval No.YUMC-2014-01-425-010)on August 16,2017.
文摘The α5 subunit-containing gamma-amino butyric acid type A receptors(α5 GABAARs) are a distinct subpopulation that are specifically distributed in the mammalian hippocampus and also mediate tonic inhibitory currents in hippocampal neurons. These tonic currents can be enhanced by low-dose isoflurane, which is associated with learning and memory impairment. Inverse agonists of α5 GABAARs, such as L-655,708, are able to reverse the short-term memory deficit caused by low-dose isoflurane in young animals. However, whether these negative allosteric modulators have the same effects on aged rats remains unclear. In the present study, we mainly investigated the effects of L-655,708 on low-dose(1.3%) isoflurane-induced learning and memory impairment in elderly rats. Young(3-month-old) and aged(24-month-old) Wistar rats were randomly assigned to receive L-655,708 0.5 hour before or 23.5 hours after 1.3% isoflurane anesthesia.The Morris Water Maze tests demonstrated that L-655,708 injected before or after anesthesia could reverse the memory deficit in young rats. But in aged rats, application of L-655,708 only before anesthesia showed similar effects. Reverse transcription-polymerase chain reaction showed that low-dose isoflurane decreased the mRNA expression of α5 GABAARs in aging hippocampal neurons but increased that in young animals. These findings indicate that L-655,708 prevented but could not reverse 1.3% isoflurane-induced spatial learning and memory impairment in aged Wistar rats. All experimental procedures and protocols were approved by the Experimental Animal Ethics Committee of Academy of Military Medical Science of China(approval No. NBCDSER-IACUC-2015128) in December 2015.
基金the National Natural Science Foundation of China(No.62276210,82201148,61775180)the Natural Science Basic Research Program of Shaanxi Province(No.2022JM-380)+3 种基金the Shaanxi Province College Students'Innovation and Entrepreneurship Training Program(No.S202311664128X)the Natural Science Foundation of Zhejiang Province(No.LQ22H120002)the Medical Health Science and Technology Project of Zhejiang Province(No.2022RC069,2023KY1140)the Natural Science Foundation of Ningbo(No.2023J390)。
文摘Cataract is the leading cause of visual impairment globally.The scarcity and uneven distribution of ophthalmologists seriously hinder early visual impairment grading for cataract patients in the clin-ic.In this study,a deep learning-based automated grading system of visual impairment in cataract patients is proposed using a multi-scale efficient channel attention convolutional neural network(MECA_CNN).First,the efficient channel attention mechanism is applied in the MECA_CNN to extract multi-scale features of fundus images,which can effectively focus on lesion-related regions.Then,the asymmetric convolutional modules are embedded in the residual unit to reduce the infor-mation loss of fine-grained features in fundus images.In addition,the asymmetric loss function is applied to address the problem of a higher false-negative rate and weak generalization ability caused by the imbalanced dataset.A total of 7299 fundus images derived from two clinical centers are em-ployed to develop and evaluate the MECA_CNN for identifying mild visual impairment caused by cataract(MVICC),moderate to severe visual impairment caused by cataract(MSVICC),and nor-mal sample.The experimental results demonstrate that the MECA_CNN provides clinically meaning-ful performance for visual impairment grading in the internal test dataset:MVICC(accuracy,sensi-tivity,and specificity;91.3%,89.9%,and 92%),MSVICC(93.2%,78.5%,and 96.7%),and normal sample(98.1%,98.0%,and 98.1%).The comparable performance in the external test dataset is achieved,further verifying the effectiveness and generalizability of the MECA_CNN model.This study provides a deep learning-based practical system for the automated grading of visu-al impairment in cataract patients,facilitating the formulation of treatment strategies in a timely man-ner and improving patients’vision prognosis.
基金supported by the National Natural Science Foundation of China,No.81301659,81401077
文摘Survivors of sepsis may suffer chronic cognitive impairment as a long-term sequela. However, the precise mechanisms of cognitive dys- function after sepsis are not well understood. We employed the cecal ligation-and-puncture-induced septic mouse model. We observed elevated phosphorylation of Akt, mammalian target of rapamycin (roTOR) and p70S6K on days 14 and 60, progressive neuronal loss in the cornu ammonis 1 region, and abnormal neuronal morphology in the hippocampus in the sepsis mouse model, These findings indicate that changes in neuronal morphology and number in the hippocampus after sepsis were associated with strong activation of the Akt/mTOR sig- naling pathway, and may reflect a "self-rescuing" feedback response to neuronal loss after sepsis.
基金supported by the State Administration of Traditional Chinese Medicine of China,No. 02-03-ZP18Hebei Provincial Education Department,No. 20015Hebei Provincial Hundred Outstanding Innovated Talents,First Batch
文摘Based on previous studies that have shown flavonoids from the stems and leaves of Scutellaria baicalensis Georgi are neuroprotective agents in a naturally senile, D-galactose, aging in vivo model, as well as an in vitro model of oxidative/hypoxic injury, we established a cerebral ischemia/reperfusion model in rats by middle cerebral artery occlusion. The light/electron microscopic observations found significant neuropathological changes including neuron loss or swelling and rough endoplasmic reticulum injury. Moreover, the activities of lactate dehydrogenase Na+-K+-ATPase, Ca2+-ATPase and superoxide dismutase were significantly lowered, and the levels of malonaldehyde increased. In addition, the memory of rats worsened. However, treatment with flavonoids from Scutellaria baicalensis Georgi (35, 70 and 140 mg/kg) for 13 days dramatically improved the above abnormal changes. These results suggest that the ability of flavonoids from Scutellaria baicalensis Georgi in attenuating cerebral functional and morphological consequences after cerebral ischemia/reperfusion may be beneficial for the treatment of ischemic brain disease.
基金supported by the National Natural Science Foundation of China,No.81303097,81373794
文摘Damage to synaptic plasticity induced by neurotoxicity of amyloid-beta is regarded to be one of the pathological mechanisms of learning and memory disabilities in Alzheimer's disease patients. This study assumed that the damage of amyloid-beta to learning and memory abilities was strongly associated with the changes in the Fyn/N-methyl-D-aspartate receptor 2B (NR2B) expression. An APP695V7171 transgenic mouse model of Alzheimer's disease was used and treatment with tetrahydroxy-stilbene glucoside was administered intragas- trically. Results showed that intragastric administration of tetrahydroxy-stilbene glucoside improved the learning and memory abilities of the transgenic mice through increasing NR2B receptors and Fyn expression. It also reversed parameters for synaptic interface structure of gray type I. These findings indicate that tetrahydroxy stilbene glucoside has protective effects on the brain, and has prospects for its clinical application to improve the learning and memory abilities and treat Alzheimer's disease.
文摘We report a case of a 21-year-old man who had severe traumatic brain injury as a result of an accident at the age of 16 years. Two years and 4 months after the trauma, at the age of 19 years, he still had severe right hemiplegia and cognitive dysfunction including aphasia and attention and memory disturbance. Conventional rehabilitation programs cou(d not resolve all of the neuropsychological problems. He started receiving Goshinjo therapy over a period of 22 months. Following the therapy, significant improvements in verbal intelligence quotient (assessed by the Wechsler Adult Intelligence Scale-Third Edition) and attention and concentration function (using the Wechsler Memory Scale-Revised), and remission of traumatic epilepsy were observed. Goshinjo therapy is suspected to be effective in the treatment of cognitive dysfunction in the chronic stage after severe traumatic brain injury.