期刊文献+
共找到83篇文章
< 1 2 5 >
每页显示 20 50 100
深度学习算法在脑电信号解码中的应用 被引量:12
1
作者 韦梦莹 李琳玲 +2 位作者 黄淦 唐翡 张治国 《中国生物医学工程学报》 CAS CSCD 北大核心 2019年第4期464-472,共9页
近年来深度学习算法得到飞速发展,在生物医学工程领域的应用也越来越广泛。其中,利用深度学习算法从脑电信号(EEG)中解码生理、心理或病理状态也受到越来越多的关注。综述近年来深度学习算法在EEG解码中的应用,介绍常用算法、典型应用... 近年来深度学习算法得到飞速发展,在生物医学工程领域的应用也越来越广泛。其中,利用深度学习算法从脑电信号(EEG)中解码生理、心理或病理状态也受到越来越多的关注。综述近年来深度学习算法在EEG解码中的应用,介绍常用算法、典型应用场景、重要进展和现存的问题。首先,论述常用于EEG解码的几类深度学习算法的基本原理,包括卷积神经网络、深度信念网络、自编码器和循环神经网络等。然后,讨论深度学习算法的几个典型EEG解码应用场景,包括脑机接口、情绪与认知识别、疾病辅助诊断。结合应用实例,归纳深度学习算法在EEG解码中的常见问题、解决方案、主要进展和研究趋势。最后,总结深度学习应用于EEG信号解码中仍待解决的一些关键问题,如参数复杂度、训练时间以及泛化能力等。 展开更多
关键词 深度学习 神经网络 脑电 解码 脑机接口
下载PDF
脑机接口——脑信息读取与脑活动调控技术 被引量:5
2
作者 许未晴 陈磊 +2 位作者 隋秀峰 田沄 刘志勇 《科学通报》 EI CAS CSCD 北大核心 2023年第8期927-943,共17页
脑机接口(brain-computer interface,BCI)技术通过建立大脑与外部设备之间直接的信息交流和信号控制通道,实现脑思维活动与外界通信和交互作用,从而进行脑信息读取、外部执行设备的控制,以及脑活动的调整和控制.脑机接口是一种多学科融... 脑机接口(brain-computer interface,BCI)技术通过建立大脑与外部设备之间直接的信息交流和信号控制通道,实现脑思维活动与外界通信和交互作用,从而进行脑信息读取、外部执行设备的控制,以及脑活动的调整和控制.脑机接口是一种多学科融合的交叉技术,涉及神经科学、计算机科学、通信与信息处理技术、人工智能技术等,展现了广阔的发展和应用前景,包括医疗与康复、科学与教育、自动驾驶、工业控制等.同时,脑机接口技术的发展和应用面临重要的技术以及法律和伦理方面的挑战.本文简要介绍脑机接口技术的基本原理和组成,从信号获取、神经解码和认知脑机接口等关键技术角度阐述了国内外研究现状:从技术角度,讨论了脑机接口技术面临生物兼容性、通信速率、信号获取和处理、神经解码、安全等方面的挑战;从伦理和法制角度,指出该技术面临隐私、自由意志、身份认同和社会公平等方面的挑战.最后,展望了脑机接口技术未来的研究方向和应用前景. 展开更多
关键词 脑机接口 神经信号读取 神经解码 安全性 法律问题 伦理问题
原文传递
脑机接口隐私风险治理 被引量:6
3
作者 王高峰 张志领 《科技管理研究》 CSSCI 北大核心 2022年第5期204-209,共6页
阐述脑机接口技术自身和技术应用可能带来的隐私风险,以及这种风险所带有的新特征,并试图从技术本身、法律与伦理这3个角度给出解决上述问题的框架。
关键词 脑机接口 神经解码 隐私 技术周期
下载PDF
基于生物脉冲信号的视觉神经编码验证方法研究
4
作者 张燚钧 刘健 黄铁军 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第1期317-326,共10页
研究界对如何对神经编码模型的性能度量还没有达成一个统一的评价标准。现有的主要编码度量方法是对神经编码模型的编码响应与真实生理响应之间的相似度进行度量。该文提出一种通过神经解码验证神经编码模型性能的方法。基于此方法构建... 研究界对如何对神经编码模型的性能度量还没有达成一个统一的评价标准。现有的主要编码度量方法是对神经编码模型的编码响应与真实生理响应之间的相似度进行度量。该文提出一种通过神经解码验证神经编码模型性能的方法。基于此方法构建了包括传统编码度量方法和神经解码度量方法的视觉脉冲信号编码验证框架,并基于动态视觉刺激下采集的蝾螈视网膜神经节细胞(RGC)脉冲信号数据集对此框架进行了实验验证。选择了具有动态视觉刺激脉冲响应编码能力的编码模型与性能先进的神经解码模型作为标准度量模型。实验从不同神经编码方式和不同维度全面地对3种神经编码模型的编码性能进行了度量。此外,实验结果表明,脉冲频率编码和脉冲计数编码两种编码方式对脉冲编码性能存在不可忽略的影响。 展开更多
关键词 神经编码 神经解码 视觉系统 类脑视觉
下载PDF
植入式脑机接口发展概况 被引量:6
5
作者 曹艳 郑筱祥 《中国生物医学工程学报》 CAS CSCD 北大核心 2014年第6期659-665,共7页
脑机接口技术在大脑与外部设备之间建立起一条新型交流与控制通道,一方面为深入了解大脑的结构和功能提供一种新的手段,另一方面为运动缺失的患者重新恢复运动功能提供一种可能的治疗方案。植入式脑机接口,因其信号的时空分辨率高、信... 脑机接口技术在大脑与外部设备之间建立起一条新型交流与控制通道,一方面为深入了解大脑的结构和功能提供一种新的手段,另一方面为运动缺失的患者重新恢复运动功能提供一种可能的治疗方案。植入式脑机接口,因其信号的时空分辨率高、信息量大、可实现复杂精细的运动控制等特点,受到众多研究者的关注。本文主要从神经信号记录、神经信号解析以及人工感觉反馈等方面,就植入式脑机接口的发展进行综述。 展开更多
关键词 植入式脑机接口 神经信号记录 神经信号解析 人工感觉反馈
下载PDF
2023年脑机接口领域发展态势
6
作者 阮梅花 张丽雯 +6 位作者 凌婕凡 袁天蔚 张学博 朱成姝 傅璐 韩雪 熊燕 《生命科学》 CSCD 2024年第1期39-47,共9页
脑机接口是人脑与计算机或其他电子设备之间建立的直接交流与控制通道。由于其战略重要性,脑机接口已经成为各国战略布局的重点。本文简要介绍了脑机接口领域的发展历程,重点从战略布局、科研进展与产业应用等角度系统梳理了2023年该领... 脑机接口是人脑与计算机或其他电子设备之间建立的直接交流与控制通道。由于其战略重要性,脑机接口已经成为各国战略布局的重点。本文简要介绍了脑机接口领域的发展历程,重点从战略布局、科研进展与产业应用等角度系统梳理了2023年该领域的最新进展,并展望未来发展趋势。2023年,神经编解码算法、神经探针与芯片等脑机接口领域核心技术取得重要进展,功能性超声脑机接口等新型脑机接口不断涌现,应用领域已经从医疗扩展到科研、娱乐等领域,重要企业取得多项里程碑进展。未来,脑机接口硬件将向小型化、高通量、柔性化发展,编解码效率和质量将大幅度提升,促进脑机接口功能从替换和恢复向改善、补充和增强转变,应用领域将进一步拓展。随着脑机接口的广泛应用,其伦理安全问题将受到重视。 展开更多
关键词 脑机接口 神经探针 神经编解码 脑机交互
原文传递
Development of an invasive brain machine interface with a monkey model 被引量:5
7
作者 ZHANG QiaoSheng ZHANG ShaoMin +7 位作者 HAO YaoYao ZHANG HuaiJian ZHU JunMing ZHAO Ting ZHANG JianMin WANG YiWen ZHENG XiaoXiang CHEN WeiDong 《Chinese Science Bulletin》 SCIE CAS 2012年第16期2036-2045,共10页
Brain-machine interfaces (BMIs) translate neural activities of the brain into specific instructions that can be carried out by external devices. BMIs have the potential to restore or augment motor functions of paralyz... Brain-machine interfaces (BMIs) translate neural activities of the brain into specific instructions that can be carried out by external devices. BMIs have the potential to restore or augment motor functions of paralyzed patients suffering from spinal cord damage. The neural activities have been used to predict the 2D or 3D movement trajectory of monkey's arm or hand in many studies. However, there are few studies on decoding the wrist movement from neural activities in center-out paradigm. The present study developed an invasive BMI system with a monkey model using a 10×10-microelectrode array in the primary motor cortex. The monkey was trained to perform a two-dimensional forelimb wrist movement paradigm where neural activities and movement signals were simultaneous recorded. Results showed that neuronal firing rates highly correlated with forelimb wrist movement; > 70% (105/149) neurons exhibited specific firing changes during movement and > 36% (54/149) neurons were used to discriminate directional pairs. The neuronal firing rates were also used to predict the wrist moving directions and continuous trajectories of the forelimb wrist. The four directions could be classified with 96% accuracy using a support vector machine, and the correlation coefficients of trajectory prediction using a general regression neural network were above 0.8 for both horizontal and vertical directions. Results showed that this BMI system could predict monkey wrist movements in high accuracy through the use of neuronal firing information. 展开更多
关键词 脑机接口 子模型 侵入性 猴子 神经活动 运动功能 轨迹预测 回归神经网络
原文传递
基于CNN和sEMG的手势识别及康复手套控制 被引量:4
8
作者 刘威 王从庆 《吉林大学学报(信息科学版)》 CAS 2020年第4期419-427,共9页
由于sEMG(Surface Electromyography)对肌肉疲劳、不同患者以及电极位移等都非常敏感,设计一种可靠、鲁棒的智能手部康复设备仍然是一项艰巨的工作。为此,提出一种基于深度学习的康复手势神经解码方法,利用患者前臂的表面肌电信号,通过... 由于sEMG(Surface Electromyography)对肌肉疲劳、不同患者以及电极位移等都非常敏感,设计一种可靠、鲁棒的智能手部康复设备仍然是一项艰巨的工作。为此,提出一种基于深度学习的康复手势神经解码方法,利用患者前臂的表面肌电信号,通过卷积神经网络(CNN:Convolutional Neural Network)识别患者的手部运动意图。通过组合特征提取方法,对8通道肌电信号每个通道的信号进行组合特征提取,组合特征包括小波包分解能量特征、时域特征和频域特征共32个特征。将8个通道特征组成一个8×32的数值矩阵并进行灰度处理成特征图,再用此特征图训练卷积神经网络,对5种不同手势进行分类,分类器准确率达到98.1%。最后通过STM32 I/O口根据分类结果输出对应的PWM(Pulse Width Modulation)控制信号控制康复手套的动作,表明了该方法的可行性,为深入研究康复手套运动控制奠定了基础。 展开更多
关键词 肌电信号 卷积神经网络 小波包变换 特征提取 神经解码
下载PDF
fMRI的视觉神经信息编解码方法综述
9
作者 杜长德 周琼怡 +1 位作者 刘澈 何晖光 《中国图象图形学报》 CSCD 北大核心 2023年第2期372-384,共13页
视觉神经信息编解码旨在利用功能磁共振成像(functional magnetic resonance imaging,fMRI)等神经影像数据研究视觉刺激与大脑神经活动之间的关系。编码研究可以对神经活动模式进行建模和预测,有助于脑科学与类脑智能的发展;解码研究可... 视觉神经信息编解码旨在利用功能磁共振成像(functional magnetic resonance imaging,fMRI)等神经影像数据研究视觉刺激与大脑神经活动之间的关系。编码研究可以对神经活动模式进行建模和预测,有助于脑科学与类脑智能的发展;解码研究可以对人的视知觉状态进行解译,能够促进脑机接口领域的发展。因此,基于fMRI的视觉神经信息编解码方法研究具有重要的科学意义和工程价值。本文在总结基于fMRI的视觉神经信息编解码关键技术与研究进展的基础上,分析现有视觉神经信息编解码方法的局限。在视觉神经信息编码方面,详细介绍了基于群体感受野估计方法的发展过程;在视觉神经信息解码方面,首先,按照任务类型将其划分为语义分类、图像辨识和图像重建3个部分,并深入阐述了每个部分的代表性研究工作和所用的方法。特别地,在图像重建部分着重介绍了基于深度生成模型(主要包括变分自编码器和生成对抗网络)的简单图像、人脸图像和复杂自然图像的重建技术。其次,统计整理了该领域常用的10个开源数据集,并对数据集的样本规模、被试个数、刺激类型、研究用途及下载地址进行了详细归纳。最后,详细介绍了视觉神经信息编解码模型常用的度量指标,分析了当前视觉神经信息编码和解码方法的不足,提出可行的改进意见,并对未来发展方向进行展望。 展开更多
关键词 神经编码 神经解码 图像重建 视觉认知计算 深度学习 脑机接口(BCI)
原文传递
基于神经网络的激光脉冲编码解码研究 被引量:4
10
作者 陈玉丹 何永强 +1 位作者 尚彩娟 陈玉成 《激光与红外》 CAS CSCD 北大核心 2010年第10期1076-1079,共4页
应用神经网络技术对寻的式制导武器常用的PCM码型进行了识别,以验证这种解码方法的有效性。通过建立线性神经网络,采用训练向量长度优先和数量优先两种方式对网络进行训练,并对下一激光脉冲信号的产生时刻进行了预测。仿真结果表明,线... 应用神经网络技术对寻的式制导武器常用的PCM码型进行了识别,以验证这种解码方法的有效性。通过建立线性神经网络,采用训练向量长度优先和数量优先两种方式对网络进行训练,并对下一激光脉冲信号的产生时刻进行了预测。仿真结果表明,线性神经网络在2.3个周期内就可以准确地预测,并且脉冲在时间轴上小范围的抖动不能影响网络的预测精度,这表明神经网络技术可以有效地对脉冲编码进行解码操作,具有一定的工程实用性。 展开更多
关键词 激光编码 神经网络 解码
下载PDF
Neural Decoding of Visual Information Across Different Neural Recording Modalities and Approaches 被引量:2
11
作者 Yi-Jun Zhang Zhao-Fei Yu +1 位作者 Jian.K.Liu Tie-Jun Huang 《Machine Intelligence Research》 EI CSCD 2022年第5期350-365,共16页
Vision plays a peculiar role in intelligence.Visual information,forming a large part of the sensory information,is fed into the human brain to formulate various types of cognition and behaviours that make humans becom... Vision plays a peculiar role in intelligence.Visual information,forming a large part of the sensory information,is fed into the human brain to formulate various types of cognition and behaviours that make humans become intelligent agents.Recent advances have led to the development of brain-inspired algorithms and models for machine vision.One of the key components of these methods is the utilization of the computational principles underlying biological neurons.Additionally,advanced experimental neuroscience techniques have generated different types of neural signals that carry essential visual information.Thus,there is a high demand for mapping out functional models for reading out visual information from neural signals.Here,we briefly review recent progress on this issue with a focus on how machine learning techniques can help in the development of models for contending various types of neural signals,from fine-scale neural spikes and single-cell calcium imaging to coarse-scale electroencephalography(EEG)and functional magnetic resonance imaging recordings of brain signals. 展开更多
关键词 neural decoding machine learning deep learning visual decoding brain-inspired vision
原文传递
RETRACTED: <i>Improved Polar Decoder Utilizing Neural Network in Fast Simplified Successive-Cancellation Decoding</i>
12
作者 Jiaxin Fang Chunwu Liu 《Optics and Photonics Journal》 2020年第6期149-158,共12页
<div style="text-align:justify;"> <p style="text-align:justify;background:white;"> <span style="font-size:10.0pt;font-family:" color:black;"="">This artic... <div style="text-align:justify;"> <p style="text-align:justify;background:white;"> <span style="font-size:10.0pt;font-family:" color:black;"="">This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's </span><span><a href="http://publicationethics.org/files/retraction%20guidelines.pdf"><span style="font-size:10.0pt;font-family:;" "="">Retraction Guidelines</span></a></span><span style="font-size:10.0pt;font-family:" color:black;"="">. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.</span><span style="font-size:10.0pt;font-family:" color:black;"=""></span> </p> <p style="text-align:justify;background:white;"> <span style="font-size:10.0pt;font-family:" color:black;"="">Please see the </span><span><a href="https://www.scirp.org/journal/paperinformation.aspx?paperid=101825"><span style="font-size:10.0pt;font-family:;" "="">article page</span></a></span><span style="font-size:10.0pt;font-family:" color:black;"=""> for more details. </span><span><a href="https://www.scirp.org/pdf/opj_2020072814494052.pdf"><span style="font-size:10.0pt;font-family:;" "="">The full retraction notice</span></a></span><span style="font-size:10.0pt;font-family:" color:black;"=""> in PDF is preceding the original paper which is marked "RETRACTED". </span> </p> <br /> </div> 展开更多
关键词 Polar Codes decoding Latency Fast Simplified Successive-Cancellation decoding (Fast-SSC) neural Network (NN)
下载PDF
Improved Polar Decoder Utilizing Neural Network in Fast Simplified Successive-Cancellation Decoding
13
作者 Jiaxin Fang Chunwu Liu 《Journal of Computer and Communications》 2020年第7期90-99,共10页
<div style="text-align:justify;"> Polar codes using successive-cancellation decoding always suffer from high latency for its serial nature. Fast simplified successive-cancellation decoding algorithm im... <div style="text-align:justify;"> Polar codes using successive-cancellation decoding always suffer from high latency for its serial nature. Fast simplified successive-cancellation decoding algorithm improves the situation in theoretically but not performs well as expected in practical for the workload of nodes identification and the existence of many short blocks. Meanwhile, Neural network (NN) based decoders have appeared as potential candidates to replace conventional decoders for polar codes. But the exponentially increasing training complexity with information bits is unacceptable which means it is only suitable for short codes. In this paper, we present an improvement that increases decoding efficiency without degrading the error-correction performance. The long polar codes are divided into several sub-blocks, some of which can be decoded adopting fast maximum likelihood decoding method and the remained parts are replaced by several short codes NN decoders. The result shows that time steps the proposed algorithm need only equal to 79.8% of fast simplified successive-cancellation decoders require. Moreover, it has up to 21.2 times faster than successive-cancellation decoding algorithm. More importantly, the proposed algorithm decreases the hardness when applying in some degree. </div> 展开更多
关键词 Polar Codes decoding Latency Fast Simplified Successive-Cancellation decoding (Fast-SSC) neural Network (NN)
下载PDF
APPLICATION OF NEURAL NETWORK INVERSE CONTROL SYSTEM IN TURBO DECODING 被引量:3
14
作者 Dong Zhenghong Wang Yuanqin 《Journal of Electronics(China)》 2007年第1期27-31,共5页
Adaptive inverse control system can improve the performance of turbo decoding,and modeling turbo decoder is one of the most important technologies. A neural network model for the inverse model of turbo decoding is pro... Adaptive inverse control system can improve the performance of turbo decoding,and modeling turbo decoder is one of the most important technologies. A neural network model for the inverse model of turbo decoding is proposed in this paper. Compared with linear filter with its revi-sion,the general relationship between the input and output of the inverse model of turbo decoding system can be established exactly by Nonlinear Auto-Regressive eXogeneous input (NARX) filter. Combined with linear inverse system,it has simpler structure and costs less computation,thus can satisfy the demand of real-time turbo decoding. Simulation results show that neural network in-verse control system can improve the performance of turbo decoding further than other linear con-trol system. 展开更多
关键词 neural network Adaptive inverse control decoding model Turbo codes
下载PDF
A Decoding Method Based on RNN for OvTDM 被引量:3
15
作者 Yue Hu Yafeng Wang Haocheng Wang 《China Communications》 SCIE CSCD 2020年第4期1-10,共10页
Overlapped X domain multiplexing(Ov XDM) is a promising encoding technique to obtain high spectral efficiency by utilizing Inter-Symbol Interference(ISI). However, the computational complexity of Maximum Likelihood Se... Overlapped X domain multiplexing(Ov XDM) is a promising encoding technique to obtain high spectral efficiency by utilizing Inter-Symbol Interference(ISI). However, the computational complexity of Maximum Likelihood Sequence Detection(MLSD) increases exponentially with the growth of spectral efficiency in Ov XDM, which is unbearable for practical implementations. This paper proposes an Ov TDM decoding method based on Recurrent Neural Network(RNN) to realize fast decoding of Ov TDM system, which has lower decoding complexity than the traditional fast decoding method. The paper derives the mathematical model of the Ov TDM decoder based on RNN and constructs the decoder model. And we compare the performance of the proposed decoding method with the MLSD algorithm and the Fano algorithm. It’s verified that the proposed decoding method exhibits a higher performance than the traditional fast decoding algorithm, especially for the scenarios of a high overlapped multiplexing coefficient. 展开更多
关键词 overlapped X-domain multiplexing(OvXDM) MAXIMUM LIKELIHOOD sequence detection(MLSD) RECURRENT neural network(RNN) fast decoding algorithm
下载PDF
神经网络技术在纠错码研究中的现状与前景
16
作者 谢显中 柏春燕 王新梅 《西安电子科技大学学报》 EI CAS CSCD 北大核心 1999年第3期383-387,共5页
综述了神经网络技术用于纠错码译码,设计好码与估计码的性能的研究现状,分析指出了已有工作中存在的突出问题.根据现代数字通信和信息存储系统的发展要求,展望了今后的研究重点与方向,包括研究高速有效的专用神经网络译码模型与算... 综述了神经网络技术用于纠错码译码,设计好码与估计码的性能的研究现状,分析指出了已有工作中存在的突出问题.根据现代数字通信和信息存储系统的发展要求,展望了今后的研究重点与方向,包括研究高速有效的专用神经网络译码模型与算法并设计实用的神经网络译码器;研究神经网络译码器新思想并开展深入工作;探索神经网络TCM技术与Turbo码的神经网络迭代译码技术等. 展开更多
关键词 纠错码 神经网络 译码 神经计算
下载PDF
Neural decoding based on probabilistic neural network 被引量:2
17
作者 Yi YU Shao-min ZHANG +4 位作者 Huai-jian ZHANG Xiao-chun LIU Qiao-sheng ZHANG Xiao-xiang ZHENG Jian-hua DAI 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2010年第4期298-306,共9页
Brain-machine interface (BMI) has been developed due to its possibility to cure severe body paralysis. This technology has been used to realize the direct control of prosthetic devices,such as robot arms,computer curs... Brain-machine interface (BMI) has been developed due to its possibility to cure severe body paralysis. This technology has been used to realize the direct control of prosthetic devices,such as robot arms,computer cursors,and paralyzed muscles. A variety of neural decoding algorithms have been designed to explore relationships between neural activities and movements of the limbs. In this paper,two novel neural decoding methods based on probabilistic neural network (PNN) in rats were introduced,the PNN decoder and the modified PNN (MPNN) decoder. In the ex-periment,rats were trained to obtain water by pressing a lever over a pressure threshold. Microelectrode array was implanted in the motor cortex to record neural activity,and pressure was recorded by a pressure sensor synchronously. After training,the pressure values were estimated from the neural signals by PNN and MPNN decoders. Their per-formances were evaluated by a correlation coefficient (CC) and a mean square error (MSE). The results show that the MPNN decoder,with a CC of 0.8657 and an MSE of 0.2563,outperformed the traditionally-used Wiener filter (WF) and Kalman filter (KF) decoders. It was also observed that the discretization level did not affect the MPNN performance,indicating that the MPNN decoder can handle different tasks in BMI system,including the detection of movement states and estimation of continuous kinematic parameters. 展开更多
关键词 Brain-machine interfaces (BMI) neural decoding Probabilistic neural network (PNN) Microelectrode array
原文传递
基于受限玻尔兹曼机的神经元群体响应的贝叶斯解码
18
作者 杨晨 刘心声 《安庆师范大学学报(自然科学版)》 2022年第1期21-27,共7页
神经元通过尖峰模式传递有关刺激的信息,多个神经元通过突触相互联系,构成了复杂的神经回路。在过去的一个世纪中,多电极记录技术的进步使科学家们能够获取一个完整神经回路的细胞响应。这些记录表明,神经元的活动之间存在显著相关性。... 神经元通过尖峰模式传递有关刺激的信息,多个神经元通过突触相互联系,构成了复杂的神经回路。在过去的一个世纪中,多电极记录技术的进步使科学家们能够获取一个完整神经回路的细胞响应。这些记录表明,神经元的活动之间存在显著相关性。因此,本文提出利用受限玻尔兹曼机模型描述神经元响应活动之间的相关性,建立神经元群体响应的编码模型,并利用贝叶斯定理构建了基于受限玻尔兹曼机模型的解码器,将它应用于模拟的小鼠视觉皮层神经元的响应序列中。实验结果表明,此解码器在准确率方面优于不考虑神经元之间相关性的独立模型解码器。 展开更多
关键词 神经编码 神经解码 受限玻尔兹曼机 神经元群体活动的相关性
下载PDF
From Parametric Representation to Dynamical System: Shifting Views of the Motor Cortex in Motor Control 被引量:1
19
作者 Tianwei Wang Yun Chen He Cui 《Neuroscience Bulletin》 SCIE CAS CSCD 2022年第7期796-808,共13页
In contrast to traditional representational perspectives in which the motor cortex is involved in motor control via neuronal preferenceforkinetics andkinematics,a dynamical system perspective emerging in the last deca... In contrast to traditional representational perspectives in which the motor cortex is involved in motor control via neuronal preferenceforkinetics andkinematics,a dynamical system perspective emerging in the last decade views the motor cortex as a dynamical machine that generates motor commands by autonomous temporal evolution.In this review,we first look back at the history of the representational and dynamical perspectives and discuss their explanatory power and controversy from both empirical and computational points of view.Here,we aim to reconcile the above perspectives,and evaluate their theoretical impact,future direction,and potential applications in brain-machine interfaces. 展开更多
关键词 Dimensionality reduction neural network Machine learning Population decoding Brain-machine interface
原文传递
MAAUNet:Exploration of U-shaped encoding and decoding structure for semantic segmentation of medical image 被引量:1
20
作者 SHAO Shuo GE Hongwei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第4期418-429,共12页
In view of the problems of multi-scale changes of segmentation targets,noise interference,rough segmentation results and slow training process faced by medical image semantic segmentation,a multi-scale residual aggreg... In view of the problems of multi-scale changes of segmentation targets,noise interference,rough segmentation results and slow training process faced by medical image semantic segmentation,a multi-scale residual aggregation U-shaped attention network structure of MAAUNet(MultiRes aggregation attention UNet)is proposed based on MultiResUNet.Firstly,aggregate connection is introduced from the original feature aggregation at the same level.Skip connection is redesigned to aggregate features of different semantic scales at the decoder subnet,and the problem of semantic gaps is further solved that may exist between skip connections.Secondly,after the multi-scale convolution module,a convolution block attention module is added to focus and integrate features in the two attention directions of channel and space to adaptively optimize the intermediate feature map.Finally,the original convolution block is improved.The convolution channels are expanded with a series convolution structure to complement each other and extract richer spatial features.Residual connections are retained and the convolution block is turned into a multi-channel convolution block.The model is made to extract multi-scale spatial features.The experimental results show that MAAUNet has strong competitiveness in challenging datasets,and shows good segmentation performance and stability in dealing with multi-scale input and noise interference. 展开更多
关键词 U-shaped attention network structure of MAAUNet convolutional neural network encoding-decoding structure attention mechanism medical image semantic segmentation
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部