Computational intelligence is one of the most powerful data processing tools to solve complex nonlinear problems, and thus plays a significant role in intelligent fault diagnosis and prediction. However, only few com-...Computational intelligence is one of the most powerful data processing tools to solve complex nonlinear problems, and thus plays a significant role in intelligent fault diagnosis and prediction. However, only few com- prehensive reviews have summarized the ongoing efforts of computational intelligence in machinery condition moni- toring and fault diagnosis. The recent research and devel- opment of computational intelligence techniques in fault diagnosis, prediction and optimal sensor placement are reviewed. The advantages and limitations of computational intelligence techniques in practical applications are dis- cussed. The characteristics of different algorithms are compared, and application situations of these methods are summarized. Computational intelligence methods need to be further studied in deep understanding algorithm mech- anism, improving algorithm efficiency and enhancing engineering application. This review may be considered as a useful guidance for researchers in selecting a suit- able method for a specific situation and pointing out potential research directions.展开更多
Abstract Recently, much attention has been paid to the reliability and vulnerability of critical infrastructure. In air traffic systems, the vulnerability analysis for airport networks can be used to guide air traffic...Abstract Recently, much attention has been paid to the reliability and vulnerability of critical infrastructure. In air traffic systems, the vulnerability analysis for airport networks can be used to guide air traffic administrations in their prioritization of the maintenance and repair of airports, as well as to avoid unnecessary disturbances in the planning of flight schedules. In this paper, the evaluation methods of airport importance and network efficiency arc established. Firstly, the evaluation indices of airport importance are proposed from both the topological and functional perspectives. The topological characteristics come from the structure of airport network and the functional features stem from the traffic flow distribution taking place inside the network. Secondly, an integrated evaluation method based on fuzzy soft set theory is proposed to identify the key airports, which can fuse together importance indices over different time intervals. Thirdly, an airport network efficiency method is established for the purpose of assessing the accuracy of the evaluation method. Finally, empirical studies using real traffic data of US and China's airport networks show that the evaluation method proposed in this papcr is the most accuratc. Thc vulucrability of US and China's airport networks is compared. The similarities and differences between airport geography distribution and airport importance distribution are discussed here and the dynamics of airport importance is studied as well.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51675098)
文摘Computational intelligence is one of the most powerful data processing tools to solve complex nonlinear problems, and thus plays a significant role in intelligent fault diagnosis and prediction. However, only few com- prehensive reviews have summarized the ongoing efforts of computational intelligence in machinery condition moni- toring and fault diagnosis. The recent research and devel- opment of computational intelligence techniques in fault diagnosis, prediction and optimal sensor placement are reviewed. The advantages and limitations of computational intelligence techniques in practical applications are dis- cussed. The characteristics of different algorithms are compared, and application situations of these methods are summarized. Computational intelligence methods need to be further studied in deep understanding algorithm mech- anism, improving algorithm efficiency and enhancing engineering application. This review may be considered as a useful guidance for researchers in selecting a suit- able method for a specific situation and pointing out potential research directions.
基金co-supported by the National Natural Science Foundation of China(No.61039001)the Scientific Research Foundation of Civil Aviation University of China(No.2014QD01S)
文摘Abstract Recently, much attention has been paid to the reliability and vulnerability of critical infrastructure. In air traffic systems, the vulnerability analysis for airport networks can be used to guide air traffic administrations in their prioritization of the maintenance and repair of airports, as well as to avoid unnecessary disturbances in the planning of flight schedules. In this paper, the evaluation methods of airport importance and network efficiency arc established. Firstly, the evaluation indices of airport importance are proposed from both the topological and functional perspectives. The topological characteristics come from the structure of airport network and the functional features stem from the traffic flow distribution taking place inside the network. Secondly, an integrated evaluation method based on fuzzy soft set theory is proposed to identify the key airports, which can fuse together importance indices over different time intervals. Thirdly, an airport network efficiency method is established for the purpose of assessing the accuracy of the evaluation method. Finally, empirical studies using real traffic data of US and China's airport networks show that the evaluation method proposed in this papcr is the most accuratc. Thc vulucrability of US and China's airport networks is compared. The similarities and differences between airport geography distribution and airport importance distribution are discussed here and the dynamics of airport importance is studied as well.