Background Hepatocellular carcinoma tends to present at a late clinical stage with poor prognosis. Therefore, it is urgent to explore and develop a simple, rapid diagnostic method, which has high sensitivity and speci...Background Hepatocellular carcinoma tends to present at a late clinical stage with poor prognosis. Therefore, it is urgent to explore and develop a simple, rapid diagnostic method, which has high sensitivity and specificity for hepatocellular carcinoma at an early stage. In this study, the serum proteins in patients with hepatocellular carcinoma or liver cirrhosis and in normal controls were analysed. Surface enhanced laser desorption/ionization time-of-flight mass (SELDI-TOF-MS) spectrometry was used to fingerprint serum protein using the protein chip technique and explore the value of the fingerprint, coupled with artificial neural network, to diagnose hepatocellular carcinoma. Methods Of the 106 serum samples obtained, 52 were from patients with hepatocellular carcinoma, 22 from patients with liver cirrhosis and 32 from healthy volunteers. The samples were randomly assigned into a training group (n = 70, 35 patients with hepatocellular carcinoma, 14 with liver cirrhosis, and 21 normal controls) and a testing group (n = 36, 17 patients with hepatocellular carcinoma, 8 with liver cirrhosis, and 11 normal controls). An artificial neural network was trained on data from 70 individuals in the training group to develop an artificial neural network diagnostic model and this model was tested. The 36 sera in the testing group were analysed with blind prediction by using the same flowchart and procedure of data collection. The 36 serum protein spectra were clustered with the preset clustering method and the same mass/charge (M/Z) peak values as those in the training group. Matrix transfer was performed after data were output. Then the data were input into the previously built artificial neural network model to get the prediction value. The M/Z peaks of the samples with more than 2000 M/Z were normalized with biomarker wizard of ProteinChip Software version 3. 1 for noise filtering. The first threshold for noise filtering was set at 5, and the second was set at 2. The 10% was the minimum threshold for clu展开更多
Biological network alignment is an important research topic in the field of bioinformatics. Nowadays almost every existing alignment method is designed to solve the deterministic biological network alignment problem.H...Biological network alignment is an important research topic in the field of bioinformatics. Nowadays almost every existing alignment method is designed to solve the deterministic biological network alignment problem.However, it is worth noting that interactions in biological networks, like many other processes in the biological realm,are probabilistic events. Therefore, more accurate and better results can be obtained if biological networks are characterized by probabilistic graphs. This probabilistic information, however, increases difficulties in analyzing networks and only few methods can handle the probabilistic information. Therefore, in this paper, an improved Probabilistic Biological Network Alignment(PBNA) is proposed. Based on Iso Rank, PBNA is able to use the probabilistic information. Furthermore, PBNA takes advantages of Contributor and Probability Generating Function(PGF) to improve the accuracy of node similarity value and reduce the computational complexity of random variables in similarity matrix. Experimental results on dataset of the Protein-Protein Interaction(PPI) networks provided by Todor demonstrate that PBNA can produce some alignment results that ignored by the deterministic methods, and produce more biologically meaningful alignment results than Iso Rank does in most of the cases based on the Gene Ontology Consistency(GOC) measure. Compared with Prob method, which is designed exactly to solve the probabilistic alignment problem, PBNA can obtain more biologically meaningful mappings in less time.展开更多
In the present study, 28 Chinese medicinal herbs belonging to traditional Chinese medicine(TCM) for the treatment of type 2 diabetes were selected to explore the application of network pharmacology in developing new C...In the present study, 28 Chinese medicinal herbs belonging to traditional Chinese medicine(TCM) for the treatment of type 2 diabetes were selected to explore the application of network pharmacology in developing new Chinese herbal medicine formulae for the treatment of type 2 diabetes mellitus(T2DM). These herbs have the highest appearance rate in the literature, and their compounds are listed. The human protein–protein interaction network and the T2DM disease protein interaction network were constructed. Then, the related algorithm for network topology was used to perform interventions on the interaction network of disease proteins and normal human proteins to test different Chinese herbal medicine compound combinations, according to the information on the interaction of compounds–targets in two databases, namely TarN et and the Medicinal Plants Database. Results of the intervention scores indicate that the method proposed in this study can provide new effective combinations of Chinese herbal medicines for T2DM. Network pharmacology can effectively promote the modernization and development of TCM.展开更多
文摘Background Hepatocellular carcinoma tends to present at a late clinical stage with poor prognosis. Therefore, it is urgent to explore and develop a simple, rapid diagnostic method, which has high sensitivity and specificity for hepatocellular carcinoma at an early stage. In this study, the serum proteins in patients with hepatocellular carcinoma or liver cirrhosis and in normal controls were analysed. Surface enhanced laser desorption/ionization time-of-flight mass (SELDI-TOF-MS) spectrometry was used to fingerprint serum protein using the protein chip technique and explore the value of the fingerprint, coupled with artificial neural network, to diagnose hepatocellular carcinoma. Methods Of the 106 serum samples obtained, 52 were from patients with hepatocellular carcinoma, 22 from patients with liver cirrhosis and 32 from healthy volunteers. The samples were randomly assigned into a training group (n = 70, 35 patients with hepatocellular carcinoma, 14 with liver cirrhosis, and 21 normal controls) and a testing group (n = 36, 17 patients with hepatocellular carcinoma, 8 with liver cirrhosis, and 11 normal controls). An artificial neural network was trained on data from 70 individuals in the training group to develop an artificial neural network diagnostic model and this model was tested. The 36 sera in the testing group were analysed with blind prediction by using the same flowchart and procedure of data collection. The 36 serum protein spectra were clustered with the preset clustering method and the same mass/charge (M/Z) peak values as those in the training group. Matrix transfer was performed after data were output. Then the data were input into the previously built artificial neural network model to get the prediction value. The M/Z peaks of the samples with more than 2000 M/Z were normalized with biomarker wizard of ProteinChip Software version 3. 1 for noise filtering. The first threshold for noise filtering was set at 5, and the second was set at 2. The 10% was the minimum threshold for clu
基金supported by the Natural Science Foundation of Jiangsu Province under Grant No. BK2012742
文摘Biological network alignment is an important research topic in the field of bioinformatics. Nowadays almost every existing alignment method is designed to solve the deterministic biological network alignment problem.However, it is worth noting that interactions in biological networks, like many other processes in the biological realm,are probabilistic events. Therefore, more accurate and better results can be obtained if biological networks are characterized by probabilistic graphs. This probabilistic information, however, increases difficulties in analyzing networks and only few methods can handle the probabilistic information. Therefore, in this paper, an improved Probabilistic Biological Network Alignment(PBNA) is proposed. Based on Iso Rank, PBNA is able to use the probabilistic information. Furthermore, PBNA takes advantages of Contributor and Probability Generating Function(PGF) to improve the accuracy of node similarity value and reduce the computational complexity of random variables in similarity matrix. Experimental results on dataset of the Protein-Protein Interaction(PPI) networks provided by Todor demonstrate that PBNA can produce some alignment results that ignored by the deterministic methods, and produce more biologically meaningful alignment results than Iso Rank does in most of the cases based on the Gene Ontology Consistency(GOC) measure. Compared with Prob method, which is designed exactly to solve the probabilistic alignment problem, PBNA can obtain more biologically meaningful mappings in less time.
基金supported by the National Natural Sciences Foundation of China(No.81374011)
文摘In the present study, 28 Chinese medicinal herbs belonging to traditional Chinese medicine(TCM) for the treatment of type 2 diabetes were selected to explore the application of network pharmacology in developing new Chinese herbal medicine formulae for the treatment of type 2 diabetes mellitus(T2DM). These herbs have the highest appearance rate in the literature, and their compounds are listed. The human protein–protein interaction network and the T2DM disease protein interaction network were constructed. Then, the related algorithm for network topology was used to perform interventions on the interaction network of disease proteins and normal human proteins to test different Chinese herbal medicine compound combinations, according to the information on the interaction of compounds–targets in two databases, namely TarN et and the Medicinal Plants Database. Results of the intervention scores indicate that the method proposed in this study can provide new effective combinations of Chinese herbal medicines for T2DM. Network pharmacology can effectively promote the modernization and development of TCM.