在介绍主动网络的基础上 ,提出了一个在移动代理系统基础上建立的安全而高效的主动网络系统框架MANet(mobile agents based active network) .通过将程序代码和数据封装成主动数据包在主动结点上作为代理来运行 ,这个框架实现了集成化...在介绍主动网络的基础上 ,提出了一个在移动代理系统基础上建立的安全而高效的主动网络系统框架MANet(mobile agents based active network) .通过将程序代码和数据封装成主动数据包在主动结点上作为代理来运行 ,这个框架实现了集成化的主动网络 ,并且通过基于 Code Broker的代码装载和缓存技术改善了整个主动网络的性能和灵活性 .展开更多
Synthesizing multi-component composites via a straightforward,reliable,and scalable approach has been challenging.Herein,a three-dimensional nitrogen-doped porous carbon decorated with core-shell Ni_(3)Sn_(2)@carbon p...Synthesizing multi-component composites via a straightforward,reliable,and scalable approach has been challenging.Herein,a three-dimensional nitrogen-doped porous carbon decorated with core-shell Ni_(3)Sn_(2)@carbon particles(3D N-PC/Ni_(3)Sn_(2)@C)was customized through a simple salt-template pyrolysis approach.The formed Ni_(3)Sn_(2) particles are perfectly surrounded by crystalline carbon layers and em-bedded in 3D carbon walls during pyrolysis.The dual protection of crystalline carbon layers and porous carbon walls guarantees the electrical conductivity and stability of Ni_(3)Sn_(2).The intriguing 3D and core-shell structure coupled with the introduction of multiple components empowers the composite with rich heterogeneous interface and conductive network,and contributes to the lightweight,corrosion resistance,oxidation resistance,and superior stability of electromagnetic(EM)wave absorbers.The N-PC/Ni_(3)Sn_(2)@C possesses the minimum reflection loss(RL min)of-54.01 dB and wide effective absorption bandwidth(EAB)of 7.36 GHz under a low filler content of less than 10%.The concept in the work proposes a facile,eco-friendly,and scalable pathway for the synthesis of other heterogeneous structures of EM wave ab-sorbers.展开更多
Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein...Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein,a high-loading Li_(2)S-based cathode with micrometric Li_(2)S particles composed of two-dimensional graphene(Gr)and one-dimensional carbon nanotubes(CNTs)in a compact geometry is developed,and the role of CNTs in stable cycling of high-capacity Li–S batteries is emphasized.In a dimensionally combined carbon matrix,CNTs embedded within the Gr sheets create robust and sustainable electron diffusion pathways while suppressing the passivation of the active carbon surface.As a unique point,during the first charging process,the proposed cathode is fully activated through the direct conversion of Li_(2)S into S_(8) without inducing lithium polysulfide formation.The direct conversion of Li_(2)S into S_(8) in the composite cathode is ubiquitously investigated using the combined study of in situ Raman spectroscopy,in situ optical microscopy,and cryogenic transmission electron microscopy.The composite cathode demonstrates unprecedented electrochemical properties even with a high Li_(2)S loading of 10 mg cm^(–2);in particular,the practical and safe Li–S full cell coupled with a graphite anode shows ultra-long-term cycling stability over 800 cycles.展开更多
Li-S batteries are considered as a highly promising candidate for the next-generation energy storage system, attributing to their tremendous energy density. However, the two-dimensional island nucleation-growth proces...Li-S batteries are considered as a highly promising candidate for the next-generation energy storage system, attributing to their tremendous energy density. However, the two-dimensional island nucleation-growth process of lithium sulfide leads to a thick insulating film covering the electrode, inducing slow electrons transfer and mass-transfer of ions and liquid sulfur species in working Li-S cells. Here, we demonstrate a bio-inspired strategy of constructing ant-nest-like hierarchical porous ultrathin carbon nanosheet networks with the implants of metallic nanoparticles electrocatalysts (HPC-MEC) as efficient nanoreactors enabling rapid mass transfer, via a simple and green NaCl template. Such nanoreactors with a large active surface area could effectively anchor polysulfides for mitigating the shuttle effect, facilitating uniformly thin Li2S film, and promoting the mass transfer for fast sulfur species conversions. This helps contribute to a continuously high sulfur utilization in Li-S batteries with the HPC-MEC reactors. As a typical exhibition, cobalt embedded hierarchical porous carbon (HPC-Co) could realize to deliver a remarkably high specific capacity of 1,540.6 mAh·g−1, an excellent rate performance of 878.8 mAh·g−1 at 2 C, and high area capacity of 11.6 mAh·cm−2 at a high sulfur load of 10 mg·cm−2 and low electrolyte/sulfur ratio of 5 µL·mg−1.展开更多
Titanium dioxides have been extensively investigated as promising anodes for Lithium ion batteries(LIBs)because of the high–rate capacity and cyclability,as well as the improved safety over graphite anode(1,2)However...Titanium dioxides have been extensively investigated as promising anodes for Lithium ion batteries(LIBs)because of the high–rate capacity and cyclability,as well as the improved safety over graphite anode(1,2)However,as a typical insertion–type anode,anatase TiO2 exhibits low conductivity(10–12S cm-1 for electron conductivity[3]and 10–17–10–10 cm2 s1 for Li+ion diffusion coefficient[4])and poor specific capacity(only accommodate<0.5 Li per bulk TiO2 unit[5]),severely limiting its practical applications.展开更多
High penetration of solar energy can result in voltage rise in midday,while growth in residential air conditioning is the main contributor of overloading and voltage drop issues during peak demand time.This paper prov...High penetration of solar energy can result in voltage rise in midday,while growth in residential air conditioning is the main contributor of overloading and voltage drop issues during peak demand time.This paper provides a hierarchical control scheme to coordinate multiple groups of aggregated thermostatically controlled loads to regulate network loading and voltage in a distribution network.Considering the limited number of messages that can be exchanged in a realistic communication environment,an event-triggered distributed control strategy is proposed in this paper.Through intermittent on and off toggling of air conditioners,the required active power adjustment is shared among participating aggregators to solve the issue.A case study is conducted and simulation results are presented to demonstrate the performance of the proposed control scheme.展开更多
基金financially supported by the Natural Science Foundation of Shandong Province(No.ZR2019YQ24)the Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).
文摘Synthesizing multi-component composites via a straightforward,reliable,and scalable approach has been challenging.Herein,a three-dimensional nitrogen-doped porous carbon decorated with core-shell Ni_(3)Sn_(2)@carbon particles(3D N-PC/Ni_(3)Sn_(2)@C)was customized through a simple salt-template pyrolysis approach.The formed Ni_(3)Sn_(2) particles are perfectly surrounded by crystalline carbon layers and em-bedded in 3D carbon walls during pyrolysis.The dual protection of crystalline carbon layers and porous carbon walls guarantees the electrical conductivity and stability of Ni_(3)Sn_(2).The intriguing 3D and core-shell structure coupled with the introduction of multiple components empowers the composite with rich heterogeneous interface and conductive network,and contributes to the lightweight,corrosion resistance,oxidation resistance,and superior stability of electromagnetic(EM)wave absorbers.The N-PC/Ni_(3)Sn_(2)@C possesses the minimum reflection loss(RL min)of-54.01 dB and wide effective absorption bandwidth(EAB)of 7.36 GHz under a low filler content of less than 10%.The concept in the work proposes a facile,eco-friendly,and scalable pathway for the synthesis of other heterogeneous structures of EM wave ab-sorbers.
基金Korea Institute of Energy Technology Evaluation and Planning,Grant/Award Number:20214000000320Samsung Research Funding&Incubation Center of Samsung Electronics,Grant/Award Number:SRFC-MA1901-06。
文摘Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein,a high-loading Li_(2)S-based cathode with micrometric Li_(2)S particles composed of two-dimensional graphene(Gr)and one-dimensional carbon nanotubes(CNTs)in a compact geometry is developed,and the role of CNTs in stable cycling of high-capacity Li–S batteries is emphasized.In a dimensionally combined carbon matrix,CNTs embedded within the Gr sheets create robust and sustainable electron diffusion pathways while suppressing the passivation of the active carbon surface.As a unique point,during the first charging process,the proposed cathode is fully activated through the direct conversion of Li_(2)S into S_(8) without inducing lithium polysulfide formation.The direct conversion of Li_(2)S into S_(8) in the composite cathode is ubiquitously investigated using the combined study of in situ Raman spectroscopy,in situ optical microscopy,and cryogenic transmission electron microscopy.The composite cathode demonstrates unprecedented electrochemical properties even with a high Li_(2)S loading of 10 mg cm^(–2);in particular,the practical and safe Li–S full cell coupled with a graphite anode shows ultra-long-term cycling stability over 800 cycles.
基金The work was supported by the National Natural Science Foundation of China(Nos.U2004172,51972287 and 51502269)Natural Science Foundation of Henan Province(No.202300410368)the Foundation for University Key Teacher of Henan Province(No.2020GGJS009).
文摘Li-S batteries are considered as a highly promising candidate for the next-generation energy storage system, attributing to their tremendous energy density. However, the two-dimensional island nucleation-growth process of lithium sulfide leads to a thick insulating film covering the electrode, inducing slow electrons transfer and mass-transfer of ions and liquid sulfur species in working Li-S cells. Here, we demonstrate a bio-inspired strategy of constructing ant-nest-like hierarchical porous ultrathin carbon nanosheet networks with the implants of metallic nanoparticles electrocatalysts (HPC-MEC) as efficient nanoreactors enabling rapid mass transfer, via a simple and green NaCl template. Such nanoreactors with a large active surface area could effectively anchor polysulfides for mitigating the shuttle effect, facilitating uniformly thin Li2S film, and promoting the mass transfer for fast sulfur species conversions. This helps contribute to a continuously high sulfur utilization in Li-S batteries with the HPC-MEC reactors. As a typical exhibition, cobalt embedded hierarchical porous carbon (HPC-Co) could realize to deliver a remarkably high specific capacity of 1,540.6 mAh·g−1, an excellent rate performance of 878.8 mAh·g−1 at 2 C, and high area capacity of 11.6 mAh·cm−2 at a high sulfur load of 10 mg·cm−2 and low electrolyte/sulfur ratio of 5 µL·mg−1.
基金supported by the National Natural Science Foundation of China (51772163)the State Key Laboratory of New Ceramic and Fine Processing Tsinghua University (KF201801)
文摘Titanium dioxides have been extensively investigated as promising anodes for Lithium ion batteries(LIBs)because of the high–rate capacity and cyclability,as well as the improved safety over graphite anode(1,2)However,as a typical insertion–type anode,anatase TiO2 exhibits low conductivity(10–12S cm-1 for electron conductivity[3]and 10–17–10–10 cm2 s1 for Li+ion diffusion coefficient[4])and poor specific capacity(only accommodate<0.5 Li per bulk TiO2 unit[5]),severely limiting its practical applications.
基金supported in part by the National Natural Science Foundation of China under Grant 71331001,71401017funding from mid-career researcher development scheme,the Faculty of Engineering&Information Technologies,The University of Sydneyin part by the 2015 Science and Technology Project of China Southern Power Grid under Grant WYKJ00000027.
文摘High penetration of solar energy can result in voltage rise in midday,while growth in residential air conditioning is the main contributor of overloading and voltage drop issues during peak demand time.This paper provides a hierarchical control scheme to coordinate multiple groups of aggregated thermostatically controlled loads to regulate network loading and voltage in a distribution network.Considering the limited number of messages that can be exchanged in a realistic communication environment,an event-triggered distributed control strategy is proposed in this paper.Through intermittent on and off toggling of air conditioners,the required active power adjustment is shared among participating aggregators to solve the issue.A case study is conducted and simulation results are presented to demonstrate the performance of the proposed control scheme.