网络入侵检测是通过分析网络流量行为来识别网络中恶意活动的过程,针对网络入侵检测面临的海量数据入侵检测的挑战,提出了一种新的基于KDD CUP 99数据集的特征选择算法,将基于滤波器和包装器的方法相结合,选择合适的特征进行网络检测入...网络入侵检测是通过分析网络流量行为来识别网络中恶意活动的过程,针对网络入侵检测面临的海量数据入侵检测的挑战,提出了一种新的基于KDD CUP 99数据集的特征选择算法,将基于滤波器和包装器的方法相结合,选择合适的特征进行网络检测入侵。首先,基于训练数据的一般特征对特征进行评价,不依赖于任何挖掘算法;然后,采用互信息萤火虫算法(MIFA)作为基于包装器的特征选择策略进行特征提取,进一步基于C4.5分类器和基于贝叶斯网络(BN)的分类器,结合KDD CUP 99数据集对得到的特征进行分类;最后,将提出的方法与已有的工作进行比较。实验结果表明:10个特征足够检测入侵,并提高了检测精度和假阳性率。展开更多
To meet the future internet traffic challenges, enhancement of hardware architectures related to network security has vital role where software security algorithms are incompatible with high speed in terms of Giga bit...To meet the future internet traffic challenges, enhancement of hardware architectures related to network security has vital role where software security algorithms are incompatible with high speed in terms of Giga bits per second (Gbps). In this paper, we discuss signature detection technique (SDT) used in network intrusion detection system (NIDS). Design of most commonly used hardware based techniques for signature detection such as finite automata, discrete comparators, Knuth-Morris-Pratt (KMP) algorithm, content addressable memory (CAM) and Bloom filter are discussed. Two novel architectures, XOR based pre computation CAM (XPCAM) and multi stage look up technique (MSLT) Bloom filter architectures are proposed and implemented in third party field programmable gate array (FPGA), and area and power consumptions are compared. 10Gbps network traffic generator (TNTG) is used to test the functionality and ensure the reliability of the proposed architectures. Our approach involves a unique combination of algorithmic and architectural techniques that outperform some of the current techniques in terms of performance, speed and powerefficiency.展开更多
Anomaly classification based on network traffic features is an important task to monitor and detect network intrusion attacks.Network-based intrusion detection systems(NIDSs)using machine learning(ML)methods are effec...Anomaly classification based on network traffic features is an important task to monitor and detect network intrusion attacks.Network-based intrusion detection systems(NIDSs)using machine learning(ML)methods are effective tools for protecting network infrastructures and services from unpredictable and unseen attacks.Among several ML methods,random forest(RF)is a robust method that can be used in ML-based network intrusion detection solutions.However,the minimum number of instances for each split and the number of trees in the forest are two key parameters of RF that can affect classification accuracy.Therefore,optimal parameter selection is a real problem in RF-based anomaly classification of intrusion detection systems.In this paper,we propose to use the genetic algorithm(GA)for selecting the appropriate values of these two parameters,optimizing the RF classifier and improving the classification accuracy of normal and abnormal network traffics.To validate the proposed GA-based RF model,a number of experiments is conducted on two public datasets and evaluated using a set of performance evaluation measures.In these experiments,the accuracy result is compared with the accuracies of baseline ML classifiers in the recent works.Experimental results reveal that the proposed model can avert the uncertainty in selection the values of RF’s parameters,improving the accuracy of anomaly classification in NIDSs without incurring excessive time.展开更多
Internet of things(IOT)possess cultural,commercial and social effect in life in the future.The nodes which are participating in IOT network are basi-cally attracted by the cyber-attack targets.Attack and identification...Internet of things(IOT)possess cultural,commercial and social effect in life in the future.The nodes which are participating in IOT network are basi-cally attracted by the cyber-attack targets.Attack and identification of anomalies in IoT infrastructure is a growing problem in the IoT domain.Machine Learning Based Ensemble Intrusion Detection(MLEID)method is applied in order to resolve the drawback by minimizing malicious actions in related botnet attacks on Message Queue Telemetry Transport(MQTT)and Hyper-Text Transfer Proto-col(HTTP)protocols.The proposed work has two significant contributions which are a selection of features and detection of attacks.New features are chosen from Improved Ant Colony Optimization(IACO)in the feature selection,and then the detection of attacks is carried out based on a combination of their possible proper-ties.The IACO approach is focused on defining the attacker’s important features against HTTP and MQTT.In the IACO algorithm,the constant factor is calculated against HTTP and MQTT based on the mean function for each element.Attack detection,the performance of several machine learning models are Distance Deci-sion Tree(DDT),Adaptive Neuro-Fuzzy Inference System(ANFIS)and Mahala-nobis Distance Support Vector Machine(MDSVM)were compared with predicting accurate attacks on the IoT network.The outcomes of these classifiers are combined into the ensemble model.The proposed MLEID strategy has effec-tively established malicious incidents.The UNSW-NB15 dataset is used to test the MLEID technique using data from simulated IoT sensors.Besides,the pro-posed MLEID technique has a greater detection rate and an inferior rate of false-positive compared to other conventional techniques.展开更多
文摘网络入侵检测是通过分析网络流量行为来识别网络中恶意活动的过程,针对网络入侵检测面临的海量数据入侵检测的挑战,提出了一种新的基于KDD CUP 99数据集的特征选择算法,将基于滤波器和包装器的方法相结合,选择合适的特征进行网络检测入侵。首先,基于训练数据的一般特征对特征进行评价,不依赖于任何挖掘算法;然后,采用互信息萤火虫算法(MIFA)作为基于包装器的特征选择策略进行特征提取,进一步基于C4.5分类器和基于贝叶斯网络(BN)的分类器,结合KDD CUP 99数据集对得到的特征进行分类;最后,将提出的方法与已有的工作进行比较。实验结果表明:10个特征足够检测入侵,并提高了检测精度和假阳性率。
文摘To meet the future internet traffic challenges, enhancement of hardware architectures related to network security has vital role where software security algorithms are incompatible with high speed in terms of Giga bits per second (Gbps). In this paper, we discuss signature detection technique (SDT) used in network intrusion detection system (NIDS). Design of most commonly used hardware based techniques for signature detection such as finite automata, discrete comparators, Knuth-Morris-Pratt (KMP) algorithm, content addressable memory (CAM) and Bloom filter are discussed. Two novel architectures, XOR based pre computation CAM (XPCAM) and multi stage look up technique (MSLT) Bloom filter architectures are proposed and implemented in third party field programmable gate array (FPGA), and area and power consumptions are compared. 10Gbps network traffic generator (TNTG) is used to test the functionality and ensure the reliability of the proposed architectures. Our approach involves a unique combination of algorithmic and architectural techniques that outperform some of the current techniques in terms of performance, speed and powerefficiency.
文摘Anomaly classification based on network traffic features is an important task to monitor and detect network intrusion attacks.Network-based intrusion detection systems(NIDSs)using machine learning(ML)methods are effective tools for protecting network infrastructures and services from unpredictable and unseen attacks.Among several ML methods,random forest(RF)is a robust method that can be used in ML-based network intrusion detection solutions.However,the minimum number of instances for each split and the number of trees in the forest are two key parameters of RF that can affect classification accuracy.Therefore,optimal parameter selection is a real problem in RF-based anomaly classification of intrusion detection systems.In this paper,we propose to use the genetic algorithm(GA)for selecting the appropriate values of these two parameters,optimizing the RF classifier and improving the classification accuracy of normal and abnormal network traffics.To validate the proposed GA-based RF model,a number of experiments is conducted on two public datasets and evaluated using a set of performance evaluation measures.In these experiments,the accuracy result is compared with the accuracies of baseline ML classifiers in the recent works.Experimental results reveal that the proposed model can avert the uncertainty in selection the values of RF’s parameters,improving the accuracy of anomaly classification in NIDSs without incurring excessive time.
基金河南省杰出人才创新基金项目(the Innovation Fundation for Talents of Henan Province under Grant No.074200510013)河南省教育厅自然科学基金项目(the Natural Science Foundation for Education Department of Henan Province under Grant No.2007520048)。
文摘Internet of things(IOT)possess cultural,commercial and social effect in life in the future.The nodes which are participating in IOT network are basi-cally attracted by the cyber-attack targets.Attack and identification of anomalies in IoT infrastructure is a growing problem in the IoT domain.Machine Learning Based Ensemble Intrusion Detection(MLEID)method is applied in order to resolve the drawback by minimizing malicious actions in related botnet attacks on Message Queue Telemetry Transport(MQTT)and Hyper-Text Transfer Proto-col(HTTP)protocols.The proposed work has two significant contributions which are a selection of features and detection of attacks.New features are chosen from Improved Ant Colony Optimization(IACO)in the feature selection,and then the detection of attacks is carried out based on a combination of their possible proper-ties.The IACO approach is focused on defining the attacker’s important features against HTTP and MQTT.In the IACO algorithm,the constant factor is calculated against HTTP and MQTT based on the mean function for each element.Attack detection,the performance of several machine learning models are Distance Deci-sion Tree(DDT),Adaptive Neuro-Fuzzy Inference System(ANFIS)and Mahala-nobis Distance Support Vector Machine(MDSVM)were compared with predicting accurate attacks on the IoT network.The outcomes of these classifiers are combined into the ensemble model.The proposed MLEID strategy has effec-tively established malicious incidents.The UNSW-NB15 dataset is used to test the MLEID technique using data from simulated IoT sensors.Besides,the pro-posed MLEID technique has a greater detection rate and an inferior rate of false-positive compared to other conventional techniques.