Complicated relationships exist in both occurrence and progression of surgical complications,which are difficult to account for using a separate quantitative method such as prediction or grading.Data of 51,030 surgica...Complicated relationships exist in both occurrence and progression of surgical complications,which are difficult to account for using a separate quantitative method such as prediction or grading.Data of 51,030 surgical inpatients were collected from four academic/teaching hospitals in a prospective cohort study in China.The relationship between preoperative factors,22 common complications,and death was analyzed.With input from 54 senior clinicians and following a Bayesian network approach,a complication grading,cluster-visualization,and prediction(GCP)system was designed to model pathways between grades of complication and preoperative risk factor clusters.In the GCP system,there were 11 nodes representing six grades of complication and five preoperative risk factor clusters,and 32 arcs representing a direct association.Several critical targets were pinpointed on the pathway.Malnourished status was a fundamental cause widely associated(7/32 arcs)with other risk factor clusters and complications.American Society of Anesthesiologists(ASA)score≥3 was directly dependent on all other risk factor clusters and influenced all severe complications.Grade III complications(mainly pneumonia)were directly dependent on4/5 risk factor clusters and affected all other grades of complication.Irrespective of grade,complication occurrence was more likely to increase the risk of other grades of complication than risk factor clusters.展开更多
Background:Prenatal evaluation of fetal lung maturity(FLM)is a challenge,and an effective non-invasive method for prenatal assessment of FLM is needed.The study aimed to establish a normal fetal lung gestational age(G...Background:Prenatal evaluation of fetal lung maturity(FLM)is a challenge,and an effective non-invasive method for prenatal assessment of FLM is needed.The study aimed to establish a normal fetal lung gestational age(GA)grading model based on deep learning(DL)algorithms,validate the effectiveness of the model,and explore the potential value of DL algorithms in assessing FLM.Methods:A total of 7013 ultrasound images obtained from 1023 normal pregnancies between 20 and 41+6 weeks were analyzed in this study.There were no pregnancy-related complications that affected fetal lung development,and all infants were born without neonatal respiratory diseases.The images were divided into three classes based on the gestational week:class I:20 to 29+6 weeks,class II:30 to 36+6 weeks,and class III:37 to 41+6 weeks.There were 3323,2142,and 1548 images in each class,respectively.First,we performed a pre-processing algorithm to remove irrelevant information from each image.Then,a convolutional neural network was designed to identify different categories of fetal lung ultrasound images.Finally,we used ten-fold cross-validation to validate the performance of our model.This new machine learning algorithm automatically extracted and classified lung ultrasound image information related to GA.This was used to establish a grading model.The performance of the grading model was assessed using accuracy,sensitivity,specificity,and receiver operating characteristic curves.Results:A normal fetal lung GA grading model was established and validated.The sensitivity of each class in the independent test set was 91.7%,69.8%,and 86.4%,respectively.The specificity of each class in the independent test set was 76.8%,90.0%,and 83.1%,respectively.The total accuracy was 83.8%.The area under the curve(AUC)of each class was 0.982,0.907,and 0.960,respectively.The micro-average AUC was 0.957,and the macro-average AUC was 0.949.Conclusions:The normal fetal lung GA grading model could accurately identify ultrasound images of the fetal lung at different GAs,wh展开更多
Cataract is the leading cause of visual impairment globally.The scarcity and uneven distribution of ophthalmologists seriously hinder early visual impairment grading for cataract patients in the clin-ic.In this study,...Cataract is the leading cause of visual impairment globally.The scarcity and uneven distribution of ophthalmologists seriously hinder early visual impairment grading for cataract patients in the clin-ic.In this study,a deep learning-based automated grading system of visual impairment in cataract patients is proposed using a multi-scale efficient channel attention convolutional neural network(MECA_CNN).First,the efficient channel attention mechanism is applied in the MECA_CNN to extract multi-scale features of fundus images,which can effectively focus on lesion-related regions.Then,the asymmetric convolutional modules are embedded in the residual unit to reduce the infor-mation loss of fine-grained features in fundus images.In addition,the asymmetric loss function is applied to address the problem of a higher false-negative rate and weak generalization ability caused by the imbalanced dataset.A total of 7299 fundus images derived from two clinical centers are em-ployed to develop and evaluate the MECA_CNN for identifying mild visual impairment caused by cataract(MVICC),moderate to severe visual impairment caused by cataract(MSVICC),and nor-mal sample.The experimental results demonstrate that the MECA_CNN provides clinically meaning-ful performance for visual impairment grading in the internal test dataset:MVICC(accuracy,sensi-tivity,and specificity;91.3%,89.9%,and 92%),MSVICC(93.2%,78.5%,and 96.7%),and normal sample(98.1%,98.0%,and 98.1%).The comparable performance in the external test dataset is achieved,further verifying the effectiveness and generalizability of the MECA_CNN model.This study provides a deep learning-based practical system for the automated grading of visu-al impairment in cataract patients,facilitating the formulation of treatment strategies in a timely man-ner and improving patients’vision prognosis.展开更多
基金supported by the National Health and Family Planning Commission of China(201402017)。
文摘Complicated relationships exist in both occurrence and progression of surgical complications,which are difficult to account for using a separate quantitative method such as prediction or grading.Data of 51,030 surgical inpatients were collected from four academic/teaching hospitals in a prospective cohort study in China.The relationship between preoperative factors,22 common complications,and death was analyzed.With input from 54 senior clinicians and following a Bayesian network approach,a complication grading,cluster-visualization,and prediction(GCP)system was designed to model pathways between grades of complication and preoperative risk factor clusters.In the GCP system,there were 11 nodes representing six grades of complication and five preoperative risk factor clusters,and 32 arcs representing a direct association.Several critical targets were pinpointed on the pathway.Malnourished status was a fundamental cause widely associated(7/32 arcs)with other risk factor clusters and complications.American Society of Anesthesiologists(ASA)score≥3 was directly dependent on all other risk factor clusters and influenced all severe complications.Grade III complications(mainly pneumonia)were directly dependent on4/5 risk factor clusters and affected all other grades of complication.Irrespective of grade,complication occurrence was more likely to increase the risk of other grades of complication than risk factor clusters.
基金a grant from the National Key Research and Development Program of China(No.2016YFC1000104).
文摘Background:Prenatal evaluation of fetal lung maturity(FLM)is a challenge,and an effective non-invasive method for prenatal assessment of FLM is needed.The study aimed to establish a normal fetal lung gestational age(GA)grading model based on deep learning(DL)algorithms,validate the effectiveness of the model,and explore the potential value of DL algorithms in assessing FLM.Methods:A total of 7013 ultrasound images obtained from 1023 normal pregnancies between 20 and 41+6 weeks were analyzed in this study.There were no pregnancy-related complications that affected fetal lung development,and all infants were born without neonatal respiratory diseases.The images were divided into three classes based on the gestational week:class I:20 to 29+6 weeks,class II:30 to 36+6 weeks,and class III:37 to 41+6 weeks.There were 3323,2142,and 1548 images in each class,respectively.First,we performed a pre-processing algorithm to remove irrelevant information from each image.Then,a convolutional neural network was designed to identify different categories of fetal lung ultrasound images.Finally,we used ten-fold cross-validation to validate the performance of our model.This new machine learning algorithm automatically extracted and classified lung ultrasound image information related to GA.This was used to establish a grading model.The performance of the grading model was assessed using accuracy,sensitivity,specificity,and receiver operating characteristic curves.Results:A normal fetal lung GA grading model was established and validated.The sensitivity of each class in the independent test set was 91.7%,69.8%,and 86.4%,respectively.The specificity of each class in the independent test set was 76.8%,90.0%,and 83.1%,respectively.The total accuracy was 83.8%.The area under the curve(AUC)of each class was 0.982,0.907,and 0.960,respectively.The micro-average AUC was 0.957,and the macro-average AUC was 0.949.Conclusions:The normal fetal lung GA grading model could accurately identify ultrasound images of the fetal lung at different GAs,wh
基金the National Natural Science Foundation of China(No.62276210,82201148,61775180)the Natural Science Basic Research Program of Shaanxi Province(No.2022JM-380)+3 种基金the Shaanxi Province College Students'Innovation and Entrepreneurship Training Program(No.S202311664128X)the Natural Science Foundation of Zhejiang Province(No.LQ22H120002)the Medical Health Science and Technology Project of Zhejiang Province(No.2022RC069,2023KY1140)the Natural Science Foundation of Ningbo(No.2023J390)。
文摘Cataract is the leading cause of visual impairment globally.The scarcity and uneven distribution of ophthalmologists seriously hinder early visual impairment grading for cataract patients in the clin-ic.In this study,a deep learning-based automated grading system of visual impairment in cataract patients is proposed using a multi-scale efficient channel attention convolutional neural network(MECA_CNN).First,the efficient channel attention mechanism is applied in the MECA_CNN to extract multi-scale features of fundus images,which can effectively focus on lesion-related regions.Then,the asymmetric convolutional modules are embedded in the residual unit to reduce the infor-mation loss of fine-grained features in fundus images.In addition,the asymmetric loss function is applied to address the problem of a higher false-negative rate and weak generalization ability caused by the imbalanced dataset.A total of 7299 fundus images derived from two clinical centers are em-ployed to develop and evaluate the MECA_CNN for identifying mild visual impairment caused by cataract(MVICC),moderate to severe visual impairment caused by cataract(MSVICC),and nor-mal sample.The experimental results demonstrate that the MECA_CNN provides clinically meaning-ful performance for visual impairment grading in the internal test dataset:MVICC(accuracy,sensi-tivity,and specificity;91.3%,89.9%,and 92%),MSVICC(93.2%,78.5%,and 96.7%),and normal sample(98.1%,98.0%,and 98.1%).The comparable performance in the external test dataset is achieved,further verifying the effectiveness and generalizability of the MECA_CNN model.This study provides a deep learning-based practical system for the automated grading of visu-al impairment in cataract patients,facilitating the formulation of treatment strategies in a timely man-ner and improving patients’vision prognosis.