期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
NNL:a domain-specific language for neural networks 被引量:1
1
作者 Wang Bingrui Chen Yunji 《High Technology Letters》 EI CAS 2020年第2期160-167,共8页
Recent years,neural networks(NNs)have received increasing attention from both academia and industry.So far significant diversity among existing NNs as well as their hardware platforms makes NN programming a daunting t... Recent years,neural networks(NNs)have received increasing attention from both academia and industry.So far significant diversity among existing NNs as well as their hardware platforms makes NN programming a daunting task.In this paper,a domain-specific language(DSL)for NNs,neural network language(NNL)is proposed to deliver productivity of NN programming and portable performance of NN execution on different hardware platforms.The productivity and flexibility of NN programming are enabled by abstracting NNs as a directed graph of blocks.The language describes 4 representative and widely used NNs and runs them on 3 different hardware platforms(CPU,GPU and NN accelerator).Experimental results show that NNs written with the proposed language are,on average,14.5%better than the baseline implementations across these 3 platforms.Moreover,compared with the Caffe framework that specifically targets the GPU platform,the code can achieve similar performance. 展开更多
关键词 artificial NEURAL network(nn) domain-specific language(DSL) NEURAL network(nn)accelerator
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部