期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Two-Dimensional Images of Current and Active Power Signals for Elevator Condition Recognition
1
作者 Xunsheng Ji Dazhi Wang Kun Jiang 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第2期48-60,共13页
In this paper, an improved two-dimensional convolution neural network(2DCNN) is proposed to monitor and analyze elevator health, based on the distribution characteristics of elevator time series data in two-dimensiona... In this paper, an improved two-dimensional convolution neural network(2DCNN) is proposed to monitor and analyze elevator health, based on the distribution characteristics of elevator time series data in two-dimensional images. The current and effective power signals from an elevator traction machine are collected to generate gray-scale binary images. The improved two-dimensional convolution neural network is used to extract deep features from the images for classification, so as to recognize the elevator working conditions. Furthermore, the oscillation criterion is proposed to describe and analyze the active power oscillations. The current and active power are used to synchronously describe the working condition of the elevator, which can explain the co-occurrence state and potential relationship of elevator data. Based on the improved integration of local features of the time series, the recognition accuracy of the proposed 2DCNN is 97.78%, which is better than that of a one-dimensional convolution neural network. This research can improve the real-time monitoring and visual analysis performance of the elevator maintenance personnel, as well as improve their work efficiency. 展开更多
关键词 elevator condition CURRENT active power two-dimensional convolution network(2dcnn)
下载PDF
基于二维卷积神经网络的电阻抗成像算法 被引量:2
2
作者 赵少峰 李静 《仪表技术与传感器》 CSCD 北大核心 2022年第7期85-88,105,共5页
电阻抗成像技术(EIT)是一种非侵入、无辐射和成本低的成像技术。其逆问题求解时,传统的解决方法存在空间分辨率差的弊端。为此,提出了二维卷积神经网络(2DCNN)的解决方法。采用该方法,在有噪声和无噪声环境下,对不同形状、大小和位置的... 电阻抗成像技术(EIT)是一种非侵入、无辐射和成本低的成像技术。其逆问题求解时,传统的解决方法存在空间分辨率差的弊端。为此,提出了二维卷积神经网络(2DCNN)的解决方法。采用该方法,在有噪声和无噪声环境下,对不同形状、大小和位置的目标物体进行仿真,并且与Tikhonov和深度学习网络(DNN)算法进行了比较。仿真结果表明2DCNN方法可以有效地提取数据特征,重建的图像相对于其他方法伪影少、分辨率高、成像质量高、抗噪声能力强。 展开更多
关键词 电阻抗成像 逆问题 图像重建 二维卷积神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部