Stem cell transplantation has brought new hope for the treatment of neurological diseases.The key to stem cell therapy lies in inducing the specific differentiation of stem cells into nerve cells.Because the different...Stem cell transplantation has brought new hope for the treatment of neurological diseases.The key to stem cell therapy lies in inducing the specific differentiation of stem cells into nerve cells.Because the differentiation of stem cells in vitro and in vivo is affected by multiple factors,the final differentiation outcome is strongly associated with the microenvironment in which the stem cells are located.Accordingly,the optimal microenvironment for inducing stem cell differentiation is a hot topic.EGb761 is extracted from the leaves of the Ginkgo biloba tree.It is used worldwide and is becoming one of the focuses of stem cell research.Studies have shown that EGb761 can antagonize oxygen free radicals,stabilize cell membranes,promote neurogenesis and synaptogenesis,increase the level of brain-derived neurotrophic factors,and replicate the environment required during the differentiation of stem cells into nerve cells.This offers the possibility of using EGb761 to induce the differentiation of stem cells,facilitating stem cell transplantation.To provide a comprehensive reference for the future application of EGb761 in stem cell therapy,we reviewed studies investigating the influence of EGb761 on stem cells.These started with the composition and neuropharmacology of EGb761,and eventually led to the finding that EGb761 and some of its important components play important roles in the differentiation of stem cells and the protection of a beneficial microenvironment for stem cell transplantation.展开更多
Neurodegenerative diseases are progressive conditions that affect the neurons of the central nervous system(CNS)and result in their damage and death.Neurodevelopmental disorders include intellectual disability,autism ...Neurodegenerative diseases are progressive conditions that affect the neurons of the central nervous system(CNS)and result in their damage and death.Neurodevelopmental disorders include intellectual disability,autism spectrum disorder,and attention-deficit/hyperactivity disorder and stem from the disruption of essential neurodevelopmental processes.The treatment of neurodegenerative and neurodevelopmental conditions,together affecting~120 million people worldwide,is challenged by the blood—brain barrier(BBB)and the blood—cerebrospinal fluid barrier that prevent the crossing of drugs from the systemic circulation into the CNS.The nose-to-brain pathway that bypasses the BBB and increases the brain bioavailability of intranasally administered drugs is promising to improve the treatment of CNS conditions.This pathway is more efficient for nanoparticles than for solutions,hence,the research on intranasal nano-drug delivery systems has grown exponentially over the last decade.Polymeric nanoparticles have become key players in the field owing to the high design and synthetic flexibility.This review describes the challenges faced for the treatment of neurodegenerative and neurodevelopmental conditions,the molecular and cellular features of the nasal mucosa and the contribution of intranasal nano-drug delivery to overcome them.Then,a comprehensive overview of polymeric nanocarriers investigated to increase drug bioavailability in the brain is introduced.展开更多
New technologies bring new insights. The existence of the first mathematical model of how the brain regulates the autonomic nervous system and physiological systems, and knowledge of how this can be applied to screen ...New technologies bring new insights. The existence of the first mathematical model of how the brain regulates the autonomic nervous system and physiological systems, and knowledge of how this can be applied to screen or treat the diabetic, enables the author to take a comprehensive view of the etiology of diabetes and obesity. This paper illustrates the dynamic relationship between the brain, physiological systems and visceral organs. It highlights that 1) blood glucose is a neurally regulated physiological system, and/or network of organs, which function coherently in order to maintain blood glucose within normal physiological limits;and 2) that dysregulation of this physiological system (regulation of blood glucose levels), by genetic or phenotypic pathologies in the organs in this system, influences the prevailing levels of insulin, directly influences brain function and hence the coherent function of this and other physiological systems and organs e.g. blood pressure, sleep, pH, digestion, sexual function, etc. In addition 3) the observation that proteins may be coiled and reactive, or uncoiled and resist reacting with their reactive substrates, leads to a greater level of understanding of the mechanisms responsible for type 2 diabetes and obesity and how such conditions could be screened and treated.展开更多
Background: The organs in the body function in coherent organ networks. These organ networks are commonly known as physiological systems. Blood Glucose, Blood Pressure and pH exhibit the characteristics of neurally re...Background: The organs in the body function in coherent organ networks. These organ networks are commonly known as physiological systems. Blood Glucose, Blood Pressure and pH exhibit the characteristics of neurally regulated Physiological Systems. Any medical condition, such as diabetes, has origins which are due to systemic dysfunction. This influences the genetic expression of proteins and the rate at which such expressed proteins subsequently react. Increased levels of acidity influence the levels of available minerals, protein conformation, and hence the rate at which expressed proteins such as insulin and leptin react or function. This is particularly significant in diabetes etiology where a deficiency of insulin and insulin-“resistance” are significant features of type 1 and type 2 diabetes. Proteins such as Insulin absorb and emit light. Moreover, the spectrum and intensity of the bioluminescence emitted from glycated proteins (which are more significantly bioluminescent) influence colour perception. Accordingly, changes to the diabetic’s colour perception can be used as the basis of a cognitive screening technique which is able to quantify the influence of genotype and phenotype. This may have significant advantages over current biomarker techniques which are not able to satisfactorily determine the earliest onset of?diabetes or distinguish between the symptomatic and presymptomatic onset of diabetes. Such methodology, based upon the properties of proteins, i.e. effectively, the rate at which proteins are expressed and the rate at which such expressed proteins subsequently react, allows the clinician to quantify genotype and phenotype and may contribute to a greater understanding of the processes responsible for what are commonly known as type 1 and type 2 diabetes. The aim of this article is to highlight the limitations of the current techniques used to diagnose diabetes and to highlight, at least from the theoretical perspective, the significance of the autonomic nervous system and physiological s展开更多
基金funded by the National Natural Science Foundation of China,No.81501185(to CR)the Key Research&Development Project of Shandong Province of China,No.2017GSF218043(to CR)the Science and Technology Planning Project of Yantai of China,No.2016WS017(to LNG),2017WS105(to HL)
文摘Stem cell transplantation has brought new hope for the treatment of neurological diseases.The key to stem cell therapy lies in inducing the specific differentiation of stem cells into nerve cells.Because the differentiation of stem cells in vitro and in vivo is affected by multiple factors,the final differentiation outcome is strongly associated with the microenvironment in which the stem cells are located.Accordingly,the optimal microenvironment for inducing stem cell differentiation is a hot topic.EGb761 is extracted from the leaves of the Ginkgo biloba tree.It is used worldwide and is becoming one of the focuses of stem cell research.Studies have shown that EGb761 can antagonize oxygen free radicals,stabilize cell membranes,promote neurogenesis and synaptogenesis,increase the level of brain-derived neurotrophic factors,and replicate the environment required during the differentiation of stem cells into nerve cells.This offers the possibility of using EGb761 to induce the differentiation of stem cells,facilitating stem cell transplantation.To provide a comprehensive reference for the future application of EGb761 in stem cell therapy,we reviewed studies investigating the influence of EGb761 on stem cells.These started with the composition and neuropharmacology of EGb761,and eventually led to the finding that EGb761 and some of its important components play important roles in the differentiation of stem cells and the protection of a beneficial microenvironment for stem cell transplantation.
基金the NEVET Nanotechnology Grant of the Russell Berrie Nanotechnology Institute(RBNI)at Technion—Israel Institute of Technology(Israel)the Tamara and Harry Handelsman Academic Chair(Israel)for financial support。
文摘Neurodegenerative diseases are progressive conditions that affect the neurons of the central nervous system(CNS)and result in their damage and death.Neurodevelopmental disorders include intellectual disability,autism spectrum disorder,and attention-deficit/hyperactivity disorder and stem from the disruption of essential neurodevelopmental processes.The treatment of neurodegenerative and neurodevelopmental conditions,together affecting~120 million people worldwide,is challenged by the blood—brain barrier(BBB)and the blood—cerebrospinal fluid barrier that prevent the crossing of drugs from the systemic circulation into the CNS.The nose-to-brain pathway that bypasses the BBB and increases the brain bioavailability of intranasally administered drugs is promising to improve the treatment of CNS conditions.This pathway is more efficient for nanoparticles than for solutions,hence,the research on intranasal nano-drug delivery systems has grown exponentially over the last decade.Polymeric nanoparticles have become key players in the field owing to the high design and synthetic flexibility.This review describes the challenges faced for the treatment of neurodegenerative and neurodevelopmental conditions,the molecular and cellular features of the nasal mucosa and the contribution of intranasal nano-drug delivery to overcome them.Then,a comprehensive overview of polymeric nanocarriers investigated to increase drug bioavailability in the brain is introduced.
文摘New technologies bring new insights. The existence of the first mathematical model of how the brain regulates the autonomic nervous system and physiological systems, and knowledge of how this can be applied to screen or treat the diabetic, enables the author to take a comprehensive view of the etiology of diabetes and obesity. This paper illustrates the dynamic relationship between the brain, physiological systems and visceral organs. It highlights that 1) blood glucose is a neurally regulated physiological system, and/or network of organs, which function coherently in order to maintain blood glucose within normal physiological limits;and 2) that dysregulation of this physiological system (regulation of blood glucose levels), by genetic or phenotypic pathologies in the organs in this system, influences the prevailing levels of insulin, directly influences brain function and hence the coherent function of this and other physiological systems and organs e.g. blood pressure, sleep, pH, digestion, sexual function, etc. In addition 3) the observation that proteins may be coiled and reactive, or uncoiled and resist reacting with their reactive substrates, leads to a greater level of understanding of the mechanisms responsible for type 2 diabetes and obesity and how such conditions could be screened and treated.
文摘Background: The organs in the body function in coherent organ networks. These organ networks are commonly known as physiological systems. Blood Glucose, Blood Pressure and pH exhibit the characteristics of neurally regulated Physiological Systems. Any medical condition, such as diabetes, has origins which are due to systemic dysfunction. This influences the genetic expression of proteins and the rate at which such expressed proteins subsequently react. Increased levels of acidity influence the levels of available minerals, protein conformation, and hence the rate at which expressed proteins such as insulin and leptin react or function. This is particularly significant in diabetes etiology where a deficiency of insulin and insulin-“resistance” are significant features of type 1 and type 2 diabetes. Proteins such as Insulin absorb and emit light. Moreover, the spectrum and intensity of the bioluminescence emitted from glycated proteins (which are more significantly bioluminescent) influence colour perception. Accordingly, changes to the diabetic’s colour perception can be used as the basis of a cognitive screening technique which is able to quantify the influence of genotype and phenotype. This may have significant advantages over current biomarker techniques which are not able to satisfactorily determine the earliest onset of?diabetes or distinguish between the symptomatic and presymptomatic onset of diabetes. Such methodology, based upon the properties of proteins, i.e. effectively, the rate at which proteins are expressed and the rate at which such expressed proteins subsequently react, allows the clinician to quantify genotype and phenotype and may contribute to a greater understanding of the processes responsible for what are commonly known as type 1 and type 2 diabetes. The aim of this article is to highlight the limitations of the current techniques used to diagnose diabetes and to highlight, at least from the theoretical perspective, the significance of the autonomic nervous system and physiological s