The peripheral nervous system has an astonishing ability to regenerate following a compression or crush injury;however,the potential for full repair following a transection injury is much less.Currently,the major clin...The peripheral nervous system has an astonishing ability to regenerate following a compression or crush injury;however,the potential for full repair following a transection injury is much less.Currently,the major clinical challenge for peripheral nerve repair come from long gaps between the proximal and distal nerve stumps,which prevent regenerating axons reaching the distal nerve.Precise axon targeting during nervous system development is controlled by families of axon guidance molecules including Netrins,Slits,Ephrins and Semaphorins.Several recent studies have indicated key roles of Netrin1,Slit3 and EphrinB2 signalling in controlling the formation of new nerve bridge tissue and precise axon regeneration after peripheral nerve transection injury.Inside the nerve bridge,nerve fibroblasts express EphrinB2 while migrating Schwann cells express the receptor EphB2.EphrinB2/EphB2 signalling between nerve fibroblasts and migrating Schwann cells is required for Sox2 upregulation in Schwann cells and the formation of Schwann cell cords within the nerve bridge to allow directional axon growth to the distal nerve stump.Macrophages in the outermost layer of the nerve bridge express Slit3 while migrating Schwann cells and regenerating axons express the receptor Robo1;within Schwann cells,Robo1 expression is also Sox2-dependent.Slit3/Robo1 signalling is required to keep migrating Schwann cells and regenerating axons inside the nerve bridge.In addition to the Slit3/Robo1 signalling system,migrating Schwann cells also express Netrin1 and regenerating axons express the DCC receptor.It appears that migrating Schwann cells could also use Netrin1 as a guidance cue to direct regenerating axons across the peripheral nerve gap.Engineered neural tissues have been suggested as promising alternatives for the repair of large peripheral nerve gaps.Therefore,understanding the function of classic axon guidance molecules in nerve bridge formation and their roles in axon regeneration could be highly beneficial in developing engineered neural展开更多
Previous studies have shown that exogenous gangliosides promote nervous system regeneration and synapse formation. In this study, 10 mm sciatic nerve segments from New Zealand rabbits were thawed from cryopreservation...Previous studies have shown that exogenous gangliosides promote nervous system regeneration and synapse formation. In this study, 10 mm sciatic nerve segments from New Zealand rabbits were thawed from cryopreservation and were used for the repair of left sciatic nerve defects through allograft bridging. Three days later, 1 mL ganglioside solution (1 g/L) was sub- cutaneously iniected into the right hind leg of rabbits. Compared with non-injected rats, muscle wet weight ratio was increased at 2-12 weeks after modeling. The quantity of myelinated fibers in regenerated sciatic nerve, myelin thickness and fiber diameter were elevated at 4-12 weeks after modeling. Sciatic nerve potential amplitude and conduction velocity were raised at 8 and 12 weeks, while conduction latencies were decreased at 12 weeks. Experimental findings indicate that ganglioside can promote the regeneration of sciatic nerve defects after repair with cryopre- served peripheral nerve allografts.展开更多
BACKGROUND: Autograft is commonly used to repair nerve deficit. Usually, the choice of donor nerves is based on their similarities in form and structures to the injured nerves. For the reason, the cutaneous antebrach...BACKGROUND: Autograft is commonly used to repair nerve deficit. Usually, the choice of donor nerves is based on their similarities in form and structures to the injured nerves. For the reason, the cutaneous antebrachii lateralis nerve is currently considered the most suited for digital nerve repair. OBJECTIVE: To compare early nerve regeneration after transplantation of three different autografts: the greater auricular nerve (GAN), the saphenous nerve (SN) and the lateral femoral cutaneous nerve (LFCN). DESIGN: Observational contrast study. SETTING: Department of Plastic Surgery and Burns, Tangdu Hospital, Fourth Military Medical University of Chinese PLA. MATERIALS: A total of 42 New Zealand rabbits, of both genders, 12-14 months old and weighing 2.0- 2.5 kg, were used in this study. In addition, Moller-spetra 900 operating microscope (Germany), Olympus BX 51 microscope, DP 70 image collecting System (Japan), BL-420E+ Biologic function testing System (China), JEM-100 electron microscope (Japan), Reichet-JunG820 Cryostat (Swiss), and Libror-AEG-120 precision analytical Balance (Japan) were also used in this study. METHODS: The experiment was carried out in the Department of Plastic Surgery and Burns, Tangdu Hospital, Fourth Military Medical University of Chinese PLA from April to November 2005. After anaesthesia, the GAN were dissected bilaterally and a 1.2 cm deficit was made in each nerve. The animals were randomly divided into three groups, including GAN group, SN group and LFCN group with 14 in each group. ① Nerve pinch test: At 1, 2, and 4 weeks after operation, three animals in each group were tested. The nerve grafts, along with the proximal and distal GAN segments were exposed and pinched with microsurgical forceps in distal-proximal orientations. The distance between the proximal anastomosis site and the most distal point, where the pinch evoked an ear contraction response, was measured as distance of nerve regeneration. ② Computer image analysis�展开更多
The repair of peripheral nerve injuries with autologous nerve remains the gold standard (Wang et al., 2005; Yao et al., 2010; Deal et al., 2012; Kriebel et al., 2014; Liu et al., 2014; Tamaki et al., 2014; Yu et al.,...The repair of peripheral nerve injuries with autologous nerve remains the gold standard (Wang et al., 2005; Yao et al., 2010; Deal et al., 2012; Kriebel et al., 2014; Liu et al., 2014; Tamaki et al., 2014; Yu et al., 2014; Zhu and Lou, 2014). With advances in tissue engineering and biomaterials, tissue-engineered nerve conduits with various biomaterials and structures, such as collagen and chitosan nerve conduits, have already been used in the clinic as alternatives to autologous nerve in the repair of peripheral nerve injury (Wang et al., 2012; Svizenska et al., 2013; Eppenberger et al., 2014; Gu et al., 2014; Koudehi et al., 2014; MoyaDiaz et al., 2014; Novajra et al., 2014; Okamoto et al., 2014; Shea et al., 2014; Singh et al., 2014; Tamaki et al., 2014; Yu et al., 2014). Therefore, new simple and effective methods展开更多
BACKGROUND: Translocation or transplantation of nerve stem has good effect; however, nervous function of donator is completely lost. If some nerve stem is damaged, sensory tracts are intercepted from the near nerve s...BACKGROUND: Translocation or transplantation of nerve stem has good effect; however, nervous function of donator is completely lost. If some nerve stem is damaged, sensory tracts are intercepted from the near nerve stem by nutrient vessels to regard as neural graft for transferring and bridging which may repair injured nerve and decrease neural functional loss of donator. OBJECTIVE: To observe anatomical peculiarities on sensory tracts of wrist median nerve pedicled with nutrient vessels transferring to bridge wrist ulnar nerve defect, and to investigate its feasibility. DESIGN:Duplicated and measured design.SETTING : Anatomy Department of Medical College affiliated to Nanhua University.MATERIALS: A total of 14 samples of upper limbs were selected from adult unnamed corpse and volunteers.METHODS: The experiment was completed at the Clinical Application Anatomy Laboratory of Medical College affiliated to Nanhua University from September to November 2005. Samples were perfused with red emulsion through artery to observe length, fibrous bands and blood supply of median nerve and ulnar nerve at wrist. Boundary of median nerve at wrist ranged from superficial site between flexor carpi radialis and palmaris Iongus to branch of common palmar digital nerves. Ulnar nerve at wrist ranged from branch of back of the hand to site of common palmar digital nerves. Proximal boundary of the two nerves was crossed from 1/8 to 2/8 region of forearm. Samples of upper limbs from 1 case were selected to simulate operation on sensory tracts of wrist median nerve pedicled with nutrient vessels transferring to bridge wrist ulnar nerve. MAIN OUTCOME MEASURES: Anatomical peculiarities on sensory tracts of wrist median nerve pedicled with nutrient vessels transferring to bridge wrist ulnar nerve defect. RESULTS: ① The length of wrist median nerves was 7.8 (7.5-8.1) cm. There were 19 to 27 nerve tracts in it and the majority belonged to sensory tracts on the ulnar side, in which non-damaged separated length was about 10展开更多
文摘The peripheral nervous system has an astonishing ability to regenerate following a compression or crush injury;however,the potential for full repair following a transection injury is much less.Currently,the major clinical challenge for peripheral nerve repair come from long gaps between the proximal and distal nerve stumps,which prevent regenerating axons reaching the distal nerve.Precise axon targeting during nervous system development is controlled by families of axon guidance molecules including Netrins,Slits,Ephrins and Semaphorins.Several recent studies have indicated key roles of Netrin1,Slit3 and EphrinB2 signalling in controlling the formation of new nerve bridge tissue and precise axon regeneration after peripheral nerve transection injury.Inside the nerve bridge,nerve fibroblasts express EphrinB2 while migrating Schwann cells express the receptor EphB2.EphrinB2/EphB2 signalling between nerve fibroblasts and migrating Schwann cells is required for Sox2 upregulation in Schwann cells and the formation of Schwann cell cords within the nerve bridge to allow directional axon growth to the distal nerve stump.Macrophages in the outermost layer of the nerve bridge express Slit3 while migrating Schwann cells and regenerating axons express the receptor Robo1;within Schwann cells,Robo1 expression is also Sox2-dependent.Slit3/Robo1 signalling is required to keep migrating Schwann cells and regenerating axons inside the nerve bridge.In addition to the Slit3/Robo1 signalling system,migrating Schwann cells also express Netrin1 and regenerating axons express the DCC receptor.It appears that migrating Schwann cells could also use Netrin1 as a guidance cue to direct regenerating axons across the peripheral nerve gap.Engineered neural tissues have been suggested as promising alternatives for the repair of large peripheral nerve gaps.Therefore,understanding the function of classic axon guidance molecules in nerve bridge formation and their roles in axon regeneration could be highly beneficial in developing engineered neural
文摘Previous studies have shown that exogenous gangliosides promote nervous system regeneration and synapse formation. In this study, 10 mm sciatic nerve segments from New Zealand rabbits were thawed from cryopreservation and were used for the repair of left sciatic nerve defects through allograft bridging. Three days later, 1 mL ganglioside solution (1 g/L) was sub- cutaneously iniected into the right hind leg of rabbits. Compared with non-injected rats, muscle wet weight ratio was increased at 2-12 weeks after modeling. The quantity of myelinated fibers in regenerated sciatic nerve, myelin thickness and fiber diameter were elevated at 4-12 weeks after modeling. Sciatic nerve potential amplitude and conduction velocity were raised at 8 and 12 weeks, while conduction latencies were decreased at 12 weeks. Experimental findings indicate that ganglioside can promote the regeneration of sciatic nerve defects after repair with cryopre- served peripheral nerve allografts.
文摘BACKGROUND: Autograft is commonly used to repair nerve deficit. Usually, the choice of donor nerves is based on their similarities in form and structures to the injured nerves. For the reason, the cutaneous antebrachii lateralis nerve is currently considered the most suited for digital nerve repair. OBJECTIVE: To compare early nerve regeneration after transplantation of three different autografts: the greater auricular nerve (GAN), the saphenous nerve (SN) and the lateral femoral cutaneous nerve (LFCN). DESIGN: Observational contrast study. SETTING: Department of Plastic Surgery and Burns, Tangdu Hospital, Fourth Military Medical University of Chinese PLA. MATERIALS: A total of 42 New Zealand rabbits, of both genders, 12-14 months old and weighing 2.0- 2.5 kg, were used in this study. In addition, Moller-spetra 900 operating microscope (Germany), Olympus BX 51 microscope, DP 70 image collecting System (Japan), BL-420E+ Biologic function testing System (China), JEM-100 electron microscope (Japan), Reichet-JunG820 Cryostat (Swiss), and Libror-AEG-120 precision analytical Balance (Japan) were also used in this study. METHODS: The experiment was carried out in the Department of Plastic Surgery and Burns, Tangdu Hospital, Fourth Military Medical University of Chinese PLA from April to November 2005. After anaesthesia, the GAN were dissected bilaterally and a 1.2 cm deficit was made in each nerve. The animals were randomly divided into three groups, including GAN group, SN group and LFCN group with 14 in each group. ① Nerve pinch test: At 1, 2, and 4 weeks after operation, three animals in each group were tested. The nerve grafts, along with the proximal and distal GAN segments were exposed and pinched with microsurgical forceps in distal-proximal orientations. The distance between the proximal anastomosis site and the most distal point, where the pinch evoked an ear contraction response, was measured as distance of nerve regeneration. ② Computer image analysis�
基金supported by the National High Technology Research and Development Program of China,No.2012AA020502the National Natural Science Foundation of China,No.81171457 and 81371687the Priority of Academic Program Development of Jiangsu Higher Education Institutions
文摘The repair of peripheral nerve injuries with autologous nerve remains the gold standard (Wang et al., 2005; Yao et al., 2010; Deal et al., 2012; Kriebel et al., 2014; Liu et al., 2014; Tamaki et al., 2014; Yu et al., 2014; Zhu and Lou, 2014). With advances in tissue engineering and biomaterials, tissue-engineered nerve conduits with various biomaterials and structures, such as collagen and chitosan nerve conduits, have already been used in the clinic as alternatives to autologous nerve in the repair of peripheral nerve injury (Wang et al., 2012; Svizenska et al., 2013; Eppenberger et al., 2014; Gu et al., 2014; Koudehi et al., 2014; MoyaDiaz et al., 2014; Novajra et al., 2014; Okamoto et al., 2014; Shea et al., 2014; Singh et al., 2014; Tamaki et al., 2014; Yu et al., 2014). Therefore, new simple and effective methods
文摘BACKGROUND: Translocation or transplantation of nerve stem has good effect; however, nervous function of donator is completely lost. If some nerve stem is damaged, sensory tracts are intercepted from the near nerve stem by nutrient vessels to regard as neural graft for transferring and bridging which may repair injured nerve and decrease neural functional loss of donator. OBJECTIVE: To observe anatomical peculiarities on sensory tracts of wrist median nerve pedicled with nutrient vessels transferring to bridge wrist ulnar nerve defect, and to investigate its feasibility. DESIGN:Duplicated and measured design.SETTING : Anatomy Department of Medical College affiliated to Nanhua University.MATERIALS: A total of 14 samples of upper limbs were selected from adult unnamed corpse and volunteers.METHODS: The experiment was completed at the Clinical Application Anatomy Laboratory of Medical College affiliated to Nanhua University from September to November 2005. Samples were perfused with red emulsion through artery to observe length, fibrous bands and blood supply of median nerve and ulnar nerve at wrist. Boundary of median nerve at wrist ranged from superficial site between flexor carpi radialis and palmaris Iongus to branch of common palmar digital nerves. Ulnar nerve at wrist ranged from branch of back of the hand to site of common palmar digital nerves. Proximal boundary of the two nerves was crossed from 1/8 to 2/8 region of forearm. Samples of upper limbs from 1 case were selected to simulate operation on sensory tracts of wrist median nerve pedicled with nutrient vessels transferring to bridge wrist ulnar nerve. MAIN OUTCOME MEASURES: Anatomical peculiarities on sensory tracts of wrist median nerve pedicled with nutrient vessels transferring to bridge wrist ulnar nerve defect. RESULTS: ① The length of wrist median nerves was 7.8 (7.5-8.1) cm. There were 19 to 27 nerve tracts in it and the majority belonged to sensory tracts on the ulnar side, in which non-damaged separated length was about 10