期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进邻域搜索策略的人工蜂群算法 被引量:16
1
作者 魏锋涛 岳明娟 郑建明 《控制与决策》 EI CSCD 北大核心 2019年第5期965-972,共8页
针对人工蜂群算法存在易陷入局部最优、收敛速度慢的缺陷,提出一种改进邻域搜索策略的人工蜂群算法.首先,将混沌思想和反向学习方法引入初始种群,设计混沌反向解初始化策略,以增大种群多样性,增强跳出局部最优的能力;然后,在跟随蜂阶段... 针对人工蜂群算法存在易陷入局部最优、收敛速度慢的缺陷,提出一种改进邻域搜索策略的人工蜂群算法.首先,将混沌思想和反向学习方法引入初始种群,设计混沌反向解初始化策略,以增大种群多样性,增强跳出局部最优的能力;然后,在跟随蜂阶段根据更新前个体最优位置引入量子行为模拟人工蜂群获取最优解,通过交叉率设计更新前个体最优位置,并利用势阱模型的控制参数提高平衡探索与开发的能力,对观察蜂邻域搜索策略进行改进,以提高算法的收敛速度和精度;最后,将改进人工蜂群算法与粒子群算法、蚁群算法以及其他改进人工蜂群算法进行比较,利用12个标准测试函数进行仿真分析.结果表明,改进算法不仅提高了收敛速度和精度,而且在高维函数优化方面具有一定的优势. 展开更多
关键词 人工蜂群算法 混沌反向解初始化策略 邻域搜索改进策略 改进算法 函数优化 仿真分析
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部