期刊文献+
共找到89篇文章
< 1 2 5 >
每页显示 20 50 100
时序约束NPE算法在化工过程故障检测中的应用 被引量:19
1
作者 杨健 宋冰 +1 位作者 谭帅 侍洪波 《化工学报》 EI CAS CSCD 北大核心 2016年第12期5131-5139,共9页
针对动态过程的故障检测问题,在邻域保持嵌入算法中改进邻域挑选,提出一种新的维度约简方法:时序约束邻域保持嵌入(time constrained neighborhood preserving embedding,TCNPE)算法。与邻域保持嵌入(neighborhood preserving embedding... 针对动态过程的故障检测问题,在邻域保持嵌入算法中改进邻域挑选,提出一种新的维度约简方法:时序约束邻域保持嵌入(time constrained neighborhood preserving embedding,TCNPE)算法。与邻域保持嵌入(neighborhood preserving embedding,NPE)算法只通过欧氏距离挑选邻域不同的是,TCNPE考虑到数据之间的时序相关性,在一定长度的时间窗之内采用k-近邻方法挑选邻域,并对时间窗内近邻与非近邻构造局部约束关系。首先,利用TCNPE提取数据特征,进行线性降维,然后构造T^2和SPE统计量并利用密度估计(kernel density estimation,KDE)确定其控制限。最后,通过数值例子和TE过程(Tennessee-Eastman process)仿真来说明本文方法的有效性。 展开更多
关键词 过程控制 动态建模 邻域保持嵌入 线性降维 故障检测 实验验证
下载PDF
基于保持近邻判别嵌入的人脸识别 被引量:11
2
作者 王国强 欧宗瑛 +1 位作者 刘典婷 苏铁明 《大连理工大学学报》 EI CAS CSCD 北大核心 2008年第3期378-382,共5页
保持近邻嵌入(NPE)是一种子空间学习方法,具有保持数据流形上局部邻域结构的属性.虽然NPE已在一些领域得到应用,但解决识别任务还有局限性.为改进NPE的识别性能,提出了一种保持近邻判别嵌入(NPDE)人脸识别方法.在NPDE算法中,有效结合了... 保持近邻嵌入(NPE)是一种子空间学习方法,具有保持数据流形上局部邻域结构的属性.虽然NPE已在一些领域得到应用,但解决识别任务还有局限性.为改进NPE的识别性能,提出了一种保持近邻判别嵌入(NPDE)人脸识别方法.在NPDE算法中,有效结合了LDA和NPE的思想,具有很强的判别力,还能根据先验类标签信息保持局部邻域的固有几何关系.在ORL人脸库以及Yale人脸数据库上的实验结果表明提出的方法是有效的. 展开更多
关键词 人脸识别 子空间学习 保持近邻嵌入 保持近邻判别嵌入
下载PDF
判别近邻保持嵌入人脸识别 被引量:10
3
作者 田玉敏 云艳娥 马天骏 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2011年第3期24-28,98,共6页
针对普通近邻保持嵌入算法侧重保持样本的局部结构,而没有考虑样本的类判别信息以及小样本问题,提出了一种新的人脸识别算法———判别近邻保持嵌入算法.在近邻保持嵌入算法的基础上,将最大散度差准则引入到其目标函数中.在嵌入低维空间... 针对普通近邻保持嵌入算法侧重保持样本的局部结构,而没有考虑样本的类判别信息以及小样本问题,提出了一种新的人脸识别算法———判别近邻保持嵌入算法.在近邻保持嵌入算法的基础上,将最大散度差准则引入到其目标函数中.在嵌入低维空间后,类内样本保持它们固有的近邻几何结构关系,而类间样本彼此分离,能够充分提取具有判别力的特征.在AT&T人脸数据库上进行的对比实验表明,与主成分分析、线性判别分析以及近邻保持嵌入算法相比,判别近邻保持嵌入算法的最高识别率分别提高了15.35%、6.47%和6.94%;在Yale人脸数据库上进行的对比实验表明,判别近邻保持嵌入算法的最高识别率分别提高了20.27%、5.63%和2.27%. 展开更多
关键词 人脸识别 近邻保持嵌入 最大散度差准则
下载PDF
基于近邻保持嵌入算法的心律失常心拍分类 被引量:10
4
作者 高兴姣 李智 +1 位作者 陈珊珊 李健 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2017年第1期1-6,共6页
心律失常是一种极其常见的心电活动异常症状,基于心电图(ECG)的心拍分类对心律失常的临床诊断具有十分重要的意义。本文提出一种基于流形学习的特征提取方法——近邻保持嵌入(NPE)算法,实现心律失常心拍的自动分类。分类系统利用NPE算... 心律失常是一种极其常见的心电活动异常症状,基于心电图(ECG)的心拍分类对心律失常的临床诊断具有十分重要的意义。本文提出一种基于流形学习的特征提取方法——近邻保持嵌入(NPE)算法,实现心律失常心拍的自动分类。分类系统利用NPE算法获取高维心电节拍信号的低维流形结构特征,然后将特征向量输入支持向量机(SVM)分类器进行心拍的分类诊断。实验基于MIT-BIH心律失常数据库提供的ECG数据,对14种类型的心律失常心拍进行分类,总体分类准确率高达98.51%。实验结果表明,所提方法是一种有效的心律失常心拍分类方法。 展开更多
关键词 心律失常 近邻保持嵌入 心电图 支持向量机
原文传递
基于时序扩展的邻域保持嵌入算法及其在故障检测中的应用 被引量:10
5
作者 苗爱敏 葛志强 +2 位作者 宋执环 蒋立 周乐 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期218-224,共7页
针对动态自相关数据的特征提取和降维问题,提出了一种基于时序扩展的邻域保持嵌入(TNPE)的故障检测方法。针对邻域保持嵌入算法的不足,构建了新的优化目标,在构建局部空间结构特征的基础上,同时提取了数据随时间变化的动态特征。使得投... 针对动态自相关数据的特征提取和降维问题,提出了一种基于时序扩展的邻域保持嵌入(TNPE)的故障检测方法。针对邻域保持嵌入算法的不足,构建了新的优化目标,在构建局部空间结构特征的基础上,同时提取了数据随时间变化的动态特征。使得投影得到的低维空间不仅和原始变量空间具有相似的空间局部近邻结构,而且具有相似的时序动态结构,因而包含了更多的特征信息。在此基础上,利用TNPE算法将原始过程数据划分为特征空间和残差空间,并分别建立T2和SPE统计量实现工业过程监测。通过对Tennessee Eastman(TE)过程的仿真研究,验证了TNPE算法有效性可行性,并显示出了优越的故障检测能力。 展开更多
关键词 流形学习 邻域保持嵌入 动态 故障检测
下载PDF
基于子分类器融合的部分遮挡人耳识别 被引量:9
6
作者 袁立 穆志纯 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第1期186-193,共8页
遮挡是人耳识别中一个难以回避的问题,本文对人耳受到部分遮挡的识别问题进行了研究。在分析人耳不同位置的鉴别能力的基础上,提出了一种基于决策层的子分类器融合的识别方法:首先将图像分割为若干连续但不重叠的子窗口;对每个子窗口,... 遮挡是人耳识别中一个难以回避的问题,本文对人耳受到部分遮挡的识别问题进行了研究。在分析人耳不同位置的鉴别能力的基础上,提出了一种基于决策层的子分类器融合的识别方法:首先将图像分割为若干连续但不重叠的子窗口;对每个子窗口,利用邻域保留嵌入算法进行特征提取,然后利用最近邻分类器进行识别;根据这些子分类器识别率的高低,可以得到相应的子窗口的鉴别能力;接下来再利用具有较高鉴别能力的子分类器进行融合识别来解决部分遮挡问题。在USTB人耳图像库上的实验结果表明人耳图像中确实有部分区域具有更高的鉴别能力,利用这些区域即可进行身份识别,而且本文提出的基于局部信息融合的方法比基于原始图像直接进行识别的方法具有更高的识别率,尤其适合于解决人耳识别中的部分遮挡问题。 展开更多
关键词 人耳识别 部分遮挡 邻域保留嵌入算法 子分类器融合
下载PDF
基于邻域保持嵌入⁃主成分分析的配电变压器合闸涌流波形特征检测 被引量:1
7
作者 王红斌 方健 +2 位作者 张敏 敖刚 池源 《电工电能新技术》 CSCD 北大核心 2024年第2期29-38,共10页
为有效检测配电变压器合闸涌流的波形特征,区分合闸时励磁涌流和故障电流,本文提出了一种基于邻域保持嵌入(NPE)和主成分分析(PCA)的变压器合闸涌流检测方法。该方法可对数据全局和局部特征信息进行检测及处理,首先利用NPE-PCA算法将电... 为有效检测配电变压器合闸涌流的波形特征,区分合闸时励磁涌流和故障电流,本文提出了一种基于邻域保持嵌入(NPE)和主成分分析(PCA)的变压器合闸涌流检测方法。该方法可对数据全局和局部特征信息进行检测及处理,首先利用NPE-PCA算法将电流数据降到二维空间,然后通过对二维空间数据拟合得到拟合误差σ,通过比较拟合误差σ与给定阈值的关系来识别合闸时励磁涌流。最后在ATP/EMTP平台搭建模型对所提出的合闸涌流波形特征检测方法进行测试,仿真结果表明本文所提NPE-PCA涌流波形检测算法能有效识别变压器合闸涌流波形特征,与二次谐波算法对比分析表明本文算法性能更优。 展开更多
关键词 合闸涌流 领域保持嵌入 主成分分析 变压器
下载PDF
基于加权近邻保持嵌入的高光谱数据降维方法 被引量:7
8
作者 陈新忠 胡汇涓 王雪松 《中国矿业大学学报》 EI CAS CSCD 北大核心 2013年第6期1066-1072,共7页
为降低高光谱数据的信息冗余以提高其分类精度,采用加权距离度量测度来衡量样本间的相似度并进而选择近邻样本,提出一种加权近邻保持嵌入数据降维(WNPE)算法.加权距离的主要思想为根据数据点附近样本点的分布来自适应地决定距离函数,由... 为降低高光谱数据的信息冗余以提高其分类精度,采用加权距离度量测度来衡量样本间的相似度并进而选择近邻样本,提出一种加权近邻保持嵌入数据降维(WNPE)算法.加权距离的主要思想为根据数据点附近样本点的分布来自适应地决定距离函数,由此可以避免基于标准欧氏距离的近邻选择方法产生的数据冗余现象,从而更好地提取信息量大的光谱波段.CUPRITE矿区高光谱数据上的实验结果表明,与目前具有代表性的稀疏降维和基于流形学习的降维算法对比,WNPE能够有效提高高光谱数据的分类总精度和Kappa系数,分别达到了90.97%和0.878 6. 展开更多
关键词 加权距离 近邻保持嵌入 高光谱数据 降维
原文传递
核岭回归的邻域保持最大间隔分析的人脸识别 被引量:7
9
作者 李勇周 罗大庸 刘少强 《模式识别与人工智能》 EI CSCD 北大核心 2010年第1期23-28,共6页
邻域保持嵌入是局部线性嵌入的线性近似,强调保持数据流形的局部结构.改进的最大间隔准则重视数据流形的判别和几何结构,提高了对数据的分类性能.文中提出的核岭回归的邻域保持最大间隔分析既保持流形的局部结构,又使不同类别的数据保... 邻域保持嵌入是局部线性嵌入的线性近似,强调保持数据流形的局部结构.改进的最大间隔准则重视数据流形的判别和几何结构,提高了对数据的分类性能.文中提出的核岭回归的邻域保持最大间隔分析既保持流形的局部结构,又使不同类别的数据保持最大间隔,以此构建算法的目标函数.为了解决数据流形高度非线性化的问题,算法采用核岭回归计算特征空间的变换矩阵.先求解数据样本在核子空间中降维映射的结果,再解得核子空间.在标准人脸数据库上的实验表明该算法正确有效,并且识别性能优于普通的流形学习算法. 展开更多
关键词 人脸识别 邻域保持嵌入 最大间隔准则 核岭回归
原文传递
基于DNPE-SVDD的化工过程监控 被引量:6
10
作者 韩晓春 薄翠梅 易辉 《系统仿真学报》 CAS CSCD 北大核心 2018年第1期184-190,共7页
针对化工过程中检测数据变量维数高、非线性与动态特性相结合的特点,而传统的线性降维算法不能提取局部结构信息和动态特性,提出了基于动态邻域保持嵌入–支持向量数据描述(DNPE-SVDD)算法的化工过程监控模型。结合DNPE在非线性降维和S... 针对化工过程中检测数据变量维数高、非线性与动态特性相结合的特点,而传统的线性降维算法不能提取局部结构信息和动态特性,提出了基于动态邻域保持嵌入–支持向量数据描述(DNPE-SVDD)算法的化工过程监控模型。结合DNPE在非线性降维和SVDD在异常点检测的优势,使用DNPE算法进行维数约减,对降维后的流形空间采用SVDD算法建立监控模型,通过Tennessee Eastman(TE)化工过程进行仿真研究,同时与DPCA、DNPE算法对比验证所提算法的性能,结果表明DNPE-SVDD能获得更高的故障检测准确率。 展开更多
关键词 邻域保持嵌入 支持向量数据描述 数据降维 过程监控
下载PDF
基于S-RNPAE算法的间歇过程早期故障监测
11
作者 刘凯 赵小强 +1 位作者 牟淼 张妍 《控制与决策》 EI CSCD 北大核心 2024年第5期1577-1586,共10页
针对具有多变量、非线性和高维度特点的间歇过程数据使得早期故障信号易被噪声干扰且故障幅值低导致故障监测效果不佳的问题,提出一种基于堆叠鲁棒邻域保持自编码(stack-robust neighborhood preserving autoencoder, S-RNPAE)的间歇过... 针对具有多变量、非线性和高维度特点的间歇过程数据使得早期故障信号易被噪声干扰且故障幅值低导致故障监测效果不佳的问题,提出一种基于堆叠鲁棒邻域保持自编码(stack-robust neighborhood preserving autoencoder, S-RNPAE)的间歇过程早期故障监测方法.首先,通过L2,1范数重新设计自编码器的目标函数,以提高模型对噪声和离群点的鲁棒性;其次,利用邻域保持嵌入来正则化鲁棒自编码器的方式构建鲁棒邻域保持自编码(robust neighborhood preserving autoencoder, RNPAE)模块,解决自编码器作为一种全局模型而忽略包含早期故障特征的局部近邻信息的提取问题;然后,将多个RNPAE模块堆叠构造S-RNPAE网络,从而获取深层全局-局部特征,保证对早期微小故障信息提取更充分,并建立检测统计量实现过程检测;最后,利用一种适用于非线性过程的贡献图方法完成故障诊断,其诊断结果更准确.通过Swiss Roll数据集和青霉素发酵过程的实验表明,所提方法的特征提取能力更强,对间歇过程的早期故障更敏感,具有更好的早期故障监测效果. 展开更多
关键词 间歇过程 早期故障 过程监测 自编码器 邻域保持嵌入
原文传递
基于变量分块的KDLV-DWSVDD间歇过程故障检测算法研究 被引量:6
12
作者 赵小强 牟淼 《仪器仪表学报》 EI CAS CSCD 北大核心 2021年第2期244-256,共13页
非线性动态间歇过程中,测量变量存在不同的序列相关性,且变量间的交叉相关性会体现在不同的采样时刻上,然而传统检测方法没有考虑这种变量间的相关性,通常将所有变量视为独立或相关关系进行特征提取,不能充分提取到故障信息的特征,造成... 非线性动态间歇过程中,测量变量存在不同的序列相关性,且变量间的交叉相关性会体现在不同的采样时刻上,然而传统检测方法没有考虑这种变量间的相关性,通常将所有变量视为独立或相关关系进行特征提取,不能充分提取到故障信息的特征,造成监测效果不佳。因此,提出一种基于变量分块的核动态潜变量-动态加权支持向量数据描述(KDLV-DWSVDD)间歇过程故障检测算法。首先,通过求取变量间的互信息值(MI)将变量分为相关与独立两个变量子块;然后,通过KDLV算法将相关变量子块分为动态部分和静态部分,对动态部分建立向量自回归模型进行监测,对静态部分采用邻域保持嵌入(NPE)算法进行监测;独立变量子块中自变量的动态信息可通过DWSVDD算法进行提取;最后,通过KDLV-DWSVDD算法建立监控统计量进行故障检测。所提算法在青霉素发酵仿真过程中平均故障检测率可达90.38%,相较对比算法提高了近15%,半导体实际工业过程也证明了所提算法对于间歇过程故障检测的可行性和优越性。 展开更多
关键词 间歇过程 故障检测 互信息 动态潜变量 支持向量数据描述 邻域保持嵌入
下载PDF
基于双子空间并行回归的化工过程质量相关故障检测方法 被引量:1
13
作者 宋冰 郭涛 +3 位作者 侍洪波 谭帅 陶阳 马浴阳 《化工学报》 EI CSCD 北大核心 2023年第11期4600-4610,共11页
邻域保持嵌入(neighborhood preserving embedding,NPE)是一种常用的无监督学习方法,在故障检测领域得到了广泛应用。由于NPE提取的数据特征无法解释输入数据和输出数据之间的关系,因此在化工过程质量相关故障检测方面存在局限性。另外,... 邻域保持嵌入(neighborhood preserving embedding,NPE)是一种常用的无监督学习方法,在故障检测领域得到了广泛应用。由于NPE提取的数据特征无法解释输入数据和输出数据之间的关系,因此在化工过程质量相关故障检测方面存在局限性。另外,NPE在提取数据流形结构时忽略了动态信息的表征。为了解决上述问题,基于NPE和慢特征分析(slow feature analysis,SFA)算法提出了一种名为双子空间并行回归(twin-space parallel regression,TSPR)的质量相关故障检测方法,该方法能够同时提取数据的流形特征和变化速度信息。首先,通过基于互信息的策略将原始过程空间分为序列相关子空间和序列无关子空间,以应对变量在时间序列相关性的差异。其次,在两个子空间中分别应用提出的邻域保持-慢特征嵌入算法(neighborhood preserving-slow feature embedding regression,NP-SFE)和NPE算法提取数据的有效结构特征,并同时用最小二乘回归在两个特征子空间中构建过程变量与质量变量的回归关系。随后,通过对回归系数的协方差矩阵分解,得到质量相关子空间和质量无关子空间,进而在相应子空间建立统计量并估计其控制限。最后,将所提方法在典型案例上进行测试验证,以说明所提方法的有效性和合理性。 展开更多
关键词 邻域保持嵌入 慢特征分析 质量相关 最小二乘回归 故障检测
下载PDF
基于邻域保持嵌入和标准距离K近邻的多模态过程故障检测 被引量:1
14
作者 张宁 李元 《自动化与仪器仪表》 2023年第3期39-44,共6页
提出一种基于邻域保持嵌和标准距离K近邻(neighborhood preserving embedding-standard distance k nearest neighbor rule, NPE-SDKNN)的故障检测方法来解决非线性和多模态问题。首先,使用邻域保持嵌入方法提取数据中的流形结构,对数... 提出一种基于邻域保持嵌和标准距离K近邻(neighborhood preserving embedding-standard distance k nearest neighbor rule, NPE-SDKNN)的故障检测方法来解决非线性和多模态问题。首先,使用邻域保持嵌入方法提取数据中的流形结构,对数据进行降维;其次,在低维空间计算每个样本的标准距离,将各模态间的数据调整到同一尺度;最后使用标准距离的统计量对故障进行检测。邻域保持嵌入能够解决非线性问题和降低计算复杂度,标准距离K近邻通过用标准距离替代原始距离,消除了数据的多模态特征,使用NPE-SDKNN方法进行故障检测,能够提高多模态数据的故障检测率。在田纳西伊斯曼过程运用NPE-SDKNN方法,结果表明,相对于K近邻、主元分析、邻域保持嵌入、标准距离K近邻方法,NPE-SDKNN具有更高的故障检测率。 展开更多
关键词 邻域保持嵌入 标准距离K近邻 非线性 多模态 故障检测
原文传递
基于邻域保留投影的工作模态参数识别 被引量:1
15
作者 符伟华 王成 陈建伟 《计算机集成制造系统》 EI CSCD 北大核心 2023年第2期503-510,共8页
针对拉普拉斯特征映射和等距离映射算法识别弱非线性特征模态精度低的缺点,提出一种利用邻域保留投影算法的工作模态参数识别方法。该方法利用局部线性特征寻找结构位移响应数据的低维嵌入数据,低维嵌入数据与模态坐标响应矩阵相对应;... 针对拉普拉斯特征映射和等距离映射算法识别弱非线性特征模态精度低的缺点,提出一种利用邻域保留投影算法的工作模态参数识别方法。该方法利用局部线性特征寻找结构位移响应数据的低维嵌入数据,低维嵌入数据与模态坐标响应矩阵相对应;利用单自由度识别技术从模态响应矩阵中识别出结构的模态固有频率;再用最小二乘广义逆估计变换矩阵,变换矩阵与模态振型矩阵相对应。该方法能够保留数据的局部线性特征,从而识别弱非线性模态。通过三维圆柱壳仿真数据集的识别结果表明,相比拉普拉斯特征映射和等距离映射算法,邻域保留投影算法能够更有效地识别出弱非线性特征模态的参数,平均识别精度更高。 展开更多
关键词 工作模态参数识别 邻域保留投影 低维嵌入 最小二乘广义逆
下载PDF
基于滑动窗邻域保留投影的工作模态分析
16
作者 符伟华 王成 陈建伟 《计算机集成制造系统》 EI CSCD 北大核心 2023年第9期2937-2947,共11页
为了识别线性慢时变结构的工作模态参数,提出一种基于滑动窗邻域保留投影(MWNPE)的工作模态参数识别方法。该方法基于“时间冻结”理论,利用固定长度的窗口,将每个窗口内的非平稳信号看作平稳的随机序列,从而将线性时变结构离散成有限... 为了识别线性慢时变结构的工作模态参数,提出一种基于滑动窗邻域保留投影(MWNPE)的工作模态参数识别方法。该方法基于“时间冻结”理论,利用固定长度的窗口,将每个窗口内的非平稳信号看作平稳的随机序列,从而将线性时变结构离散成有限个线性时不变结构。在每个窗口内,利用邻域保留投影算法寻找窗口内位移响应数据的低维嵌入,低维嵌入与模态坐标响应矩阵相对应;再利用单自由度识别技术从模态响应矩阵中识别出窗口的模态固有频率;最后,利用最小二乘广义逆估计出变换矩阵,变换矩阵与模态振型矩阵相对应。通过质量慢时变三自由度(DOF)的仿真结构验证表明,所提方法能有效识别出线性慢时变结构的工作模态参数,且识别精度优于滑动窗主成分分析方法和滑动窗等变自适应源分离(EASI)方法。 展开更多
关键词 线性慢时变结构 工作模态参数 滑动窗 邻域保留投影 最小二乘广义逆
下载PDF
基于邻域保持嵌入-主成分分析的高压电缆状态数据异常检测及分析 被引量:4
17
作者 刘敏 方义治 +4 位作者 孙廷玺 罗思琴 王升 周念成 兰雪珂 《科学技术与工程》 北大核心 2019年第27期192-199,共8页
为发现高压电缆异常状态并及时地发出异常告警,提出了一种基于邻域保持嵌入(neighborhood preserving embedding,NPE)和主成分分析(principal component analysis,PCA)的高压电缆异常状态检测方法。针对PCA只能保留数据全局结构信息的缺... 为发现高压电缆异常状态并及时地发出异常告警,提出了一种基于邻域保持嵌入(neighborhood preserving embedding,NPE)和主成分分析(principal component analysis,PCA)的高压电缆异常状态检测方法。针对PCA只能保留数据全局结构信息的缺陷,提出将流形学习算法NPE与PCA结合,从而实现数据全局和局部特征信息的全方面提取;然后利用T2和SPE统计量作为电缆状态特征量,其控制限作为状态异常阈值判据,并推导出不同异常状态特征指标的贡献度,确定高压电缆主要异常指标;接着通过计算高压电缆各分段统计量的值,确定电缆异常区域;最后利用广东珠海供电局辖区内220 k V高压电缆统计资料验证所提策略的正确性。 展开更多
关键词 高压电缆 异常检测 领域保持嵌入 主成分分析 全局和局部特征
下载PDF
应用于人脸图像识别的邻域保持极限学习机 被引量:4
18
作者 魏迪 刘德山 +1 位作者 闫德勤 张悦 《计算机工程与应用》 CSCD 北大核心 2019年第11期187-191,共5页
极限学习机广泛应用于人脸识别领域。传统的极限学习机算法因在少量标签样本上进行训练,容易发生学习过程不充分问题,同时在学习过程中往往忽略了样本内在的几何结构,影响其对人脸识别的分类能力。受流形学习思想的启发,提出一种邻域保... 极限学习机广泛应用于人脸识别领域。传统的极限学习机算法因在少量标签样本上进行训练,容易发生学习过程不充分问题,同时在学习过程中往往忽略了样本内在的几何结构,影响其对人脸识别的分类能力。受流形学习思想的启发,提出一种邻域保持极限学习机算法。该算法保持数据最本质的结构和同类数据的判别信息,利用最小化类内散度矩阵来提高极限学习机整体的分类性能。通过人脸数据集上的多次实验结果表明,该算法的人脸识别准确率高于其他算法,更能有效地进行分类识别。 展开更多
关键词 极限学习机 流形学习 近邻保持嵌入 几何结构
下载PDF
基于GSFA-GNPE的动态-静态联合指标间歇过程监控 被引量:4
19
作者 赵小强 牟淼 《上海交通大学学报》 EI CAS CSCD 北大核心 2021年第11期1417-1428,共12页
传统的过程监控方法忽略了变量间的时序相关性,且没有区分变量间的动态关系与静态关系,从而导致监控效果不佳.针对此问题,本文提出一种基于全局慢特征分析(GSFA)-全局邻域保持嵌入(GNPE)的动态-静态联合指标间歇过程监控方法,该方法可... 传统的过程监控方法忽略了变量间的时序相关性,且没有区分变量间的动态关系与静态关系,从而导致监控效果不佳.针对此问题,本文提出一种基于全局慢特征分析(GSFA)-全局邻域保持嵌入(GNPE)的动态-静态联合指标间歇过程监控方法,该方法可以有效提取动态全局特征和静态全局特征.首先,对过程变量的动态特性和静态特性进行评估,把自相关和互相关性较弱的变量视为静态变量,剩余变量视为动态变量;其次,分别对动态子空间和静态子空间构建GSFA和GNPE模型;然后,对来自每个子空间的统计信息使用贝叶斯推理进行组合,以得出混合模型的联合指标实现过程监控;最后,将所提算法应用于数值算例和青霉素发酵仿真过程进行仿真验证.结果表明,GSFA-GNPE算法相较于其他算法的故障检测效果更好. 展开更多
关键词 间歇过程 过程监控 慢特征分析 邻域保持嵌入 全局-局部 贝叶斯推断
下载PDF
基于近邻保持嵌入的卫星姿态控制系统微小故障检测 被引量:3
20
作者 刘敏 陆宁云 +1 位作者 肇刚 姜斌 《空间控制技术与应用》 CSCD 北大核心 2018年第2期42-48,共7页
以卫星姿态控制系统(ACS)为研究对象,以微小故障检测为研究目标,提出一种改进的近邻保持嵌入算法(EWMA-DNPE).针对近邻保持嵌入(NPE)算法中邻域参数无法自动设定的缺陷,通过引入动态邻域,使得动态近邻保持嵌入算法(DNPE)可根据流形的样... 以卫星姿态控制系统(ACS)为研究对象,以微小故障检测为研究目标,提出一种改进的近邻保持嵌入算法(EWMA-DNPE).针对近邻保持嵌入(NPE)算法中邻域参数无法自动设定的缺陷,通过引入动态邻域,使得动态近邻保持嵌入算法(DNPE)可根据流形的样本密度动态地选取近邻点计算权值重构矩阵.将指数加权移动平均(EWMA)引入DNPE,通过EWMA对历史故障数据的累加作用,建立SPE统计量实现微小故障的检测,并仿真验证了EWMA-DNPE算法对卫星ACS微小故障检测的有效性和可行性. 展开更多
关键词 卫星姿态控制系统 微小故障检测 近邻保持嵌入 近邻参数
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部