目的由于在静电纺丝过程中射流的鞭动现象会严重影响纺丝的质量,无法实现图案的精准化沉积和高分辨率的喷墨打印,需要探究减小射流鞭动现象的方法。方法首先采用COMSOL Multiphysics多物理耦合场有限元仿真软件,对纺丝过程中有无添加辅...目的由于在静电纺丝过程中射流的鞭动现象会严重影响纺丝的质量,无法实现图案的精准化沉积和高分辨率的喷墨打印,需要探究减小射流鞭动现象的方法。方法首先采用COMSOL Multiphysics多物理耦合场有限元仿真软件,对纺丝过程中有无添加辅助电极情况下的电场场强大小和分布进行模拟分析,随后通过实验进行对比验证,并根据结果设计一套适用于近场直写微纳喷印的纤维薄膜打印数控系统,实现纳米纤维的重复沉积,进行纤维薄膜的打印。结果实验采用质量分数为8%的聚氧化乙烯(PEO)溶液作为纺丝溶液,注射器及喷丝针头容量为2.5 m L,针头外径为0.6 mm,长度为12 mm,注射泵流量设置为0.5?L/min,2台高压电源设置的电压均为1.01 k V。实验结果表明,未添加辅助电极时,纤维容易出现卷曲,而添加辅助电极后,纤维细直不卷曲。结论利用平行辅助电极将工作电场集中在所需范围内,使电场尽可能实现垂直地从喷丝针头到接收基板,能有效减小纺丝射流的鞭动现象给稳定沉积带来的不良影响,可实现聚合物溶液高分辨率的喷墨印刷,能够实现图案的精准化沉积。展开更多
This paper briefly reviews the recent research on the near rapid directional solidification and microstructure superfining. The morphology transitions and the corresponding mechanical properties are presented. The cri...This paper briefly reviews the recent research on the near rapid directional solidification and microstructure superfining. The morphology transitions and the corresponding mechanical properties are presented. The critical velocities relevant to the morphology transitions are comprehensively given. Meanwhile the solidification characteristics near absolute stability limit are studied.It can be clearly seen that the superfine microstructures possess extremely better properties compared with the conventional microstructures.展开更多
Al 4.95%Zn alloy is directionally solidified in a modified Bridgman apparatus with higher temperature gradient to investigate response of cellular/dendritic microstructures and primary spacing to the variation of grow...Al 4.95%Zn alloy is directionally solidified in a modified Bridgman apparatus with higher temperature gradient to investigate response of cellular/dendritic microstructures and primary spacing to the variation of growth velocity under near rapid directional solidification condition. The results show that, with increasing growth rate, there exists a transition from dendrite to fine cell and a wide distribution range in primary cellular/dendritic spacing at the given temperature gradient. The maximum, λ max , minimum, λ min , and average primary spacing, λ , as functions of growth velocity, v , can be given by λ max =12 340 v -0.835 3 , λ min =2 953.7 v -0.771 7 , λ =7 820.3 v -0.833 3 , respectively. , as functions of growth velocity, v , can be given by λ max =12 340 v -0.835 3 , λ min =2 953.7 v -0.771 7 , λ =7 820.3 v -0.833 3 , respectively.展开更多
文摘目的由于在静电纺丝过程中射流的鞭动现象会严重影响纺丝的质量,无法实现图案的精准化沉积和高分辨率的喷墨打印,需要探究减小射流鞭动现象的方法。方法首先采用COMSOL Multiphysics多物理耦合场有限元仿真软件,对纺丝过程中有无添加辅助电极情况下的电场场强大小和分布进行模拟分析,随后通过实验进行对比验证,并根据结果设计一套适用于近场直写微纳喷印的纤维薄膜打印数控系统,实现纳米纤维的重复沉积,进行纤维薄膜的打印。结果实验采用质量分数为8%的聚氧化乙烯(PEO)溶液作为纺丝溶液,注射器及喷丝针头容量为2.5 m L,针头外径为0.6 mm,长度为12 mm,注射泵流量设置为0.5?L/min,2台高压电源设置的电压均为1.01 k V。实验结果表明,未添加辅助电极时,纤维容易出现卷曲,而添加辅助电极后,纤维细直不卷曲。结论利用平行辅助电极将工作电场集中在所需范围内,使电场尽可能实现垂直地从喷丝针头到接收基板,能有效减小纺丝射流的鞭动现象给稳定沉积带来的不良影响,可实现聚合物溶液高分辨率的喷墨印刷,能够实现图案的精准化沉积。
文摘This paper briefly reviews the recent research on the near rapid directional solidification and microstructure superfining. The morphology transitions and the corresponding mechanical properties are presented. The critical velocities relevant to the morphology transitions are comprehensively given. Meanwhile the solidification characteristics near absolute stability limit are studied.It can be clearly seen that the superfine microstructures possess extremely better properties compared with the conventional microstructures.
文摘Al 4.95%Zn alloy is directionally solidified in a modified Bridgman apparatus with higher temperature gradient to investigate response of cellular/dendritic microstructures and primary spacing to the variation of growth velocity under near rapid directional solidification condition. The results show that, with increasing growth rate, there exists a transition from dendrite to fine cell and a wide distribution range in primary cellular/dendritic spacing at the given temperature gradient. The maximum, λ max , minimum, λ min , and average primary spacing, λ , as functions of growth velocity, v , can be given by λ max =12 340 v -0.835 3 , λ min =2 953.7 v -0.771 7 , λ =7 820.3 v -0.833 3 , respectively. , as functions of growth velocity, v , can be given by λ max =12 340 v -0.835 3 , λ min =2 953.7 v -0.771 7 , λ =7 820.3 v -0.833 3 , respectively.