Near-infrared(NIR)light-triggered photothermal therapy(PTT)is a promising treatment strategy for treating cancer.The combination of nanotechnology and NIR has been widely applied.However,the therapeutic efficacy of th...Near-infrared(NIR)light-triggered photothermal therapy(PTT)is a promising treatment strategy for treating cancer.The combination of nanotechnology and NIR has been widely applied.However,the therapeutic efficacy of the drug-delivery system depends on their ability to avoid phagocytosis of endothelial system,cross the biological barriers,prolong circulation life,localize and rapidly release the therapeutic at target sites.In this work,we designed a platelet membrane(PM)-camouflaged hollow mesoporous bismuth selenide nanoparticles(BS NPs)loading with indocyanine green(ICG)(PM@BS-ICG NPs)to achieve the above advantages.PM-coating has active tumor-targe ting ability which could preve nt drug leakage and provide drug long circulation,causing drug delivery systems to accumulate in tumor sites effectively.Moreover,as a type of the photothermal sensitizers,BS NPs are used as the inner cores to improve ICG stability and are served as scaffolds to enhance the hardness of this drug delivery system.For one hand,the thermal vibration of BS NPs under NIR laser irradiation causes tumor inhibition through hyperthermia.For another hand,this hyperthermia process could damage PM and let ICG rapid release from PM@BS-ICG NPs.The in vitro and in vivo results showed that this biomimetic nano-drug delivery system exhibits obvious antitumor activity which has good application prospect.展开更多
Near-infrared(NIR)phosphor-converted light-emitting diodes/laser diodes(LEDs/LDs)are prospective lighting sources for NIR spectroscopy.However,developing NIR phosphor materials with desired thermal robustness and high...Near-infrared(NIR)phosphor-converted light-emitting diodes/laser diodes(LEDs/LDs)are prospective lighting sources for NIR spectroscopy.However,developing NIR phosphor materials with desired thermal robustness and high photoelectric efficiency is a crucial challenge for their applications.In this work,based on the cationic radius matching effect,a series of(Lu,Y)_(3)(Al,Sc,Cr)_(2)Al_(3)O_(12)NIR phosphor ceramics(LuYScCr NIR-PCs)were fabricated by vacuum sintering.Excellent thermal stability(95%@150℃)was obtained in the prepared NIR-PCs,owing to their weak electron-phonon coupling effect(small Huang-Rhys factor).Being excited at 460 nm,NIR-PCs realized a broadband emission(650-850 nm)with internal quantum efficiency(IQE)of 60.68%.Combining NIR-PCs with LED/LD chips,the maximum output power of the encapsulated LED prototype was 447 mW@300 mA with photoelectric efficiency of as high as 18.6%@180 mA,and the maximum output power of the LD prototype was 814 mW@2.5 A.The working temperatures of NIR-PCs were 70.8℃@300 mA(LED)and 102.8℃@3 A(LD).Finally,the prepared NIR-PCs applied in food detection were verified in this study,demonstrating their anticipated application prospects in the future.展开更多
The optical design of near-infrared phase contrast imaging(NI-PCI)diagnosis on HL-2A is introduced in this paper.This scheme benefits from the great progress of near-infrared laser technology and is a broadening of tr...The optical design of near-infrared phase contrast imaging(NI-PCI)diagnosis on HL-2A is introduced in this paper.This scheme benefits from the great progress of near-infrared laser technology and is a broadening of traditional phase contrast technology.This diagnostic can work as a keen tool to measure plasma wavenumber spectra by inferring string-integrated plasma density fluctuations.Design of both the front optical path which is the path before the laser transmitting into the tokamak plasma and the rear optics which is the path after the laser passing through the plasma is detailed.The 1550 nm laser is chosen as the probe beam and highprecision optical components are designed to fit the laser beam,in which a phase plate with a 194-nm-deep silver groove is the key.Compared with the conventional 10.6μm laser-based PCI system on HL-2A,NI-PCI significantly overcomes the unwanted phase scintillation effect and promotes the measurement capability of high-wavenumber turbulence with an increased maximal measurable wavenumber from 15 cm^(-1)to 32.6 cm^(-1).展开更多
Lanthanum-doped double halide perovskite has attracted increasing interest due to its distinctive upconversion and near-infrared(NIR) luminous characteristics.Here,erbium ion(Er^(3+)) doped Cs_(2)(Na/Ag)BiCl_(6) micro...Lanthanum-doped double halide perovskite has attracted increasing interest due to its distinctive upconversion and near-infrared(NIR) luminous characteristics.Here,erbium ion(Er^(3+)) doped Cs_(2)(Na/Ag)BiCl_(6) microcrystals(MCs) were synthesized and proved to be one of the most prospective candidates for optical thermometry.The enhancement of both white light from self-trapped exciton emission and NIR emission from Er^(3+) ion of Cs_(2)AgBiCl_(6) microcrystals is caused by lattice distortion due to Na^(+) ion doping.Fluorescence intensity ratio and lifetime methods provide self-referenced and sensitive thermometry under 405 and/or 980 nm laser excitation at the temperatures from 80 to 480 K.Besides,the maximum values of relative and absolute sensitivity of 3.62%/K and 27//K can be achieved in the low to high temperature range under 980 and 405 nm laser co-excitation.Through the experimental analysis,Er^(3+)doped Cs_(2)(Na/Ag)BiCl_(6) double perovskite is considered to be an ideal self-calibrating thermometric material due to its good long-term stability and multi-mode function of excitation and detection.展开更多
基金supported by the National Natural Science Foundation of China(Nos.81673021 and U1804183)the Scientific and Technological Project of Henan Province(No.182102310117)。
文摘Near-infrared(NIR)light-triggered photothermal therapy(PTT)is a promising treatment strategy for treating cancer.The combination of nanotechnology and NIR has been widely applied.However,the therapeutic efficacy of the drug-delivery system depends on their ability to avoid phagocytosis of endothelial system,cross the biological barriers,prolong circulation life,localize and rapidly release the therapeutic at target sites.In this work,we designed a platelet membrane(PM)-camouflaged hollow mesoporous bismuth selenide nanoparticles(BS NPs)loading with indocyanine green(ICG)(PM@BS-ICG NPs)to achieve the above advantages.PM-coating has active tumor-targe ting ability which could preve nt drug leakage and provide drug long circulation,causing drug delivery systems to accumulate in tumor sites effectively.Moreover,as a type of the photothermal sensitizers,BS NPs are used as the inner cores to improve ICG stability and are served as scaffolds to enhance the hardness of this drug delivery system.For one hand,the thermal vibration of BS NPs under NIR laser irradiation causes tumor inhibition through hyperthermia.For another hand,this hyperthermia process could damage PM and let ICG rapid release from PM@BS-ICG NPs.The in vitro and in vivo results showed that this biomimetic nano-drug delivery system exhibits obvious antitumor activity which has good application prospect.
基金The authors acknowledge the generous financial support from the National Natural Science Foundation of China(Nos.52302139,61973103,52272141,and 51972060)Doctoral Foundation Project of Henan University of Technology(No.2021BS069)+3 种基金Natural Science Foundation of Henan Province Youth Fund(No.222300420039)the Key Science and Technology Program of Henan Province(Nos.222102210023 and 232102211074)Project of Songshan Laboratory(No.YYJC072022020)Key Specialized Research of Zhengzhou Science and Technology Innovation Cooperation(No.21ZZXTCX01).
文摘Near-infrared(NIR)phosphor-converted light-emitting diodes/laser diodes(LEDs/LDs)are prospective lighting sources for NIR spectroscopy.However,developing NIR phosphor materials with desired thermal robustness and high photoelectric efficiency is a crucial challenge for their applications.In this work,based on the cationic radius matching effect,a series of(Lu,Y)_(3)(Al,Sc,Cr)_(2)Al_(3)O_(12)NIR phosphor ceramics(LuYScCr NIR-PCs)were fabricated by vacuum sintering.Excellent thermal stability(95%@150℃)was obtained in the prepared NIR-PCs,owing to their weak electron-phonon coupling effect(small Huang-Rhys factor).Being excited at 460 nm,NIR-PCs realized a broadband emission(650-850 nm)with internal quantum efficiency(IQE)of 60.68%.Combining NIR-PCs with LED/LD chips,the maximum output power of the encapsulated LED prototype was 447 mW@300 mA with photoelectric efficiency of as high as 18.6%@180 mA,and the maximum output power of the LD prototype was 814 mW@2.5 A.The working temperatures of NIR-PCs were 70.8℃@300 mA(LED)and 102.8℃@3 A(LD).Finally,the prepared NIR-PCs applied in food detection were verified in this study,demonstrating their anticipated application prospects in the future.
基金supported by the National Key Research and Development Program of China(Nos.2019YFE03090100 and 2022YFE03100002)National Natural Science Foundation of China(No.12075241)。
文摘The optical design of near-infrared phase contrast imaging(NI-PCI)diagnosis on HL-2A is introduced in this paper.This scheme benefits from the great progress of near-infrared laser technology and is a broadening of traditional phase contrast technology.This diagnostic can work as a keen tool to measure plasma wavenumber spectra by inferring string-integrated plasma density fluctuations.Design of both the front optical path which is the path before the laser transmitting into the tokamak plasma and the rear optics which is the path after the laser passing through the plasma is detailed.The 1550 nm laser is chosen as the probe beam and highprecision optical components are designed to fit the laser beam,in which a phase plate with a 194-nm-deep silver groove is the key.Compared with the conventional 10.6μm laser-based PCI system on HL-2A,NI-PCI significantly overcomes the unwanted phase scintillation effect and promotes the measurement capability of high-wavenumber turbulence with an increased maximal measurable wavenumber from 15 cm^(-1)to 32.6 cm^(-1).
基金Project supported by the Heilongjiang Provincial Key Laboratory of Micro-nano Sensitive Devices and SystemsBasic Research Project for Outstanding Young Teachers of Heilongjiang Province (YQJH2023128)Cultivation Project of Double First-class Initiative Discipline by Heilongjiang Province(LJGXCG2022-061)。
文摘Lanthanum-doped double halide perovskite has attracted increasing interest due to its distinctive upconversion and near-infrared(NIR) luminous characteristics.Here,erbium ion(Er^(3+)) doped Cs_(2)(Na/Ag)BiCl_(6) microcrystals(MCs) were synthesized and proved to be one of the most prospective candidates for optical thermometry.The enhancement of both white light from self-trapped exciton emission and NIR emission from Er^(3+) ion of Cs_(2)AgBiCl_(6) microcrystals is caused by lattice distortion due to Na^(+) ion doping.Fluorescence intensity ratio and lifetime methods provide self-referenced and sensitive thermometry under 405 and/or 980 nm laser excitation at the temperatures from 80 to 480 K.Besides,the maximum values of relative and absolute sensitivity of 3.62%/K and 27//K can be achieved in the low to high temperature range under 980 and 405 nm laser co-excitation.Through the experimental analysis,Er^(3+)doped Cs_(2)(Na/Ag)BiCl_(6) double perovskite is considered to be an ideal self-calibrating thermometric material due to its good long-term stability and multi-mode function of excitation and detection.