In arid areas,ecological degradation aroused by over-exploitation of fresh water,expansion of artificial oasis and shrinkage of natural oasis,has drawn attention of many scholars and officials.The water and ecological...In arid areas,ecological degradation aroused by over-exploitation of fresh water,expansion of artificial oasis and shrinkage of natural oasis,has drawn attention of many scholars and officials.The water and ecological footprints can be used to quantitatively evaluate the water consumption of social-economic activities and their influence on the eco-environments.In addition,increase of the water footprint indicates the expansion of artificial oasis,and the influence on the natural oasis could be reflected by the variation of the ecological footprint.This study was conducted to answer a scientific question that what is the quantitative relationship between the expansion of the artificial oasis and the degradation of the natural oasis in the arid environments of Xinjiang,China.Thus,based on the social-economic data,water consumption data and meteorological data during 2001–2015,we calculated the water and ecological footprints to express the human-related pressure exerted on the water resources and arid environments in Xinjiang(including 14 prefectures and cities),and explore the relationship between the water and ecological footprints and its mechanism by using the coupling analysis and Granger causality test.The results show that both the water and ecological footprints of Xinjiang increased significantly during 2001–2015,and the increasing rate of the ecological footprint was much faster than that of the water footprint.The coupling degree between the water and ecological footprints was relatively high at the temporal scale and varied at the spatial scale.Among the 14 prefectures and cities examined in Xinjiang,the greater social-economic development(such as in Karamay and Urumqi)was associated with the lower coupling degree between the two footprints.Increases in the water footprint will cause the ecological footprint to increase,such that a 1-unit increase in the consumption of water resources would lead to 2–3 units of ecological degradation.The quantitative relationship between the increases of the wate展开更多
An oasis is a unique natural landscape in arid and semi-arid areas,significant for regulating regional microclimates and hydrological processes in deserts.However,little is known regarding the response of natural oasi...An oasis is a unique natural landscape in arid and semi-arid areas,significant for regulating regional microclimates and hydrological processes in deserts.However,little is known regarding the response of natural oasis plants communities to various environmental factors.Nineteen sample plots(50 m×50 m)were selected in the Daliyabuyi Oasis in the Taklimakan Desert hinterland based on the location of groundwater monitoring wells and 76 vegetation quadrats(25 m×25 m)were established.A two-way indicator species analysis,Mantel test,detrended correspondence analysis,canonical correspondence analysis(CCA),and hierarchical partitioning were used to provide an in-depth analysis of community classification,species composition,and environmental interpretation of the oasis.A generalized linear model was used to verify the results which showed that the current oasis community could be divided into four types according to the dominant species,which is controlled by soil moisture.Measurement of species composition and distribution of communities showed significant differences between species diversity of individual community types.Variations in groundwater depth affects patterns of species diversity which is sensitive to richness,while the degree of surface water disturbance affects the pattern of species evenness.Moreover,the CCA ordination map showed that community distribution and diversity characteristics have their own preferences in habitat gradients.The study concluded that the species dominance of the community and the composition and distribution are not dominated by a single factor.There are differences in the scale and effect of different water resource types in maintaining community characteristics.展开更多
The human and natural factors complicit in the driving forces of oasis change have always received considerable interest from the international research community. In this study, we used principal component analysis o...The human and natural factors complicit in the driving forces of oasis change have always received considerable interest from the international research community. In this study, we used principal component analysis of natural and socio-economic statistical factors to quantitatively analyze the causal relationships and their contributions to the observed periodic expansion or shrinkage of the Minqin Oasis over almost 60 years. Our results show that human factors were the dominant factors governing expansion or shrinkage, with average contributions of 69.38% and 76.16%, respectively. Moreover, policy decisions have been the pivotal human factors. Under the influence of various policies, we have found that water resource utilization, land reclamation, population explosion, ecological protection and economic development have each played leading roles in different periods. This study provides a scientific basis for modelling the dynamics of an oasis for sustainable management.展开更多
基金supported by the National Key Technology Research and Development Program of China(2017YFC0404301,2016YFA0601602)the National Natural Science Foundation of China(51479209,51609260)
文摘In arid areas,ecological degradation aroused by over-exploitation of fresh water,expansion of artificial oasis and shrinkage of natural oasis,has drawn attention of many scholars and officials.The water and ecological footprints can be used to quantitatively evaluate the water consumption of social-economic activities and their influence on the eco-environments.In addition,increase of the water footprint indicates the expansion of artificial oasis,and the influence on the natural oasis could be reflected by the variation of the ecological footprint.This study was conducted to answer a scientific question that what is the quantitative relationship between the expansion of the artificial oasis and the degradation of the natural oasis in the arid environments of Xinjiang,China.Thus,based on the social-economic data,water consumption data and meteorological data during 2001–2015,we calculated the water and ecological footprints to express the human-related pressure exerted on the water resources and arid environments in Xinjiang(including 14 prefectures and cities),and explore the relationship between the water and ecological footprints and its mechanism by using the coupling analysis and Granger causality test.The results show that both the water and ecological footprints of Xinjiang increased significantly during 2001–2015,and the increasing rate of the ecological footprint was much faster than that of the water footprint.The coupling degree between the water and ecological footprints was relatively high at the temporal scale and varied at the spatial scale.Among the 14 prefectures and cities examined in Xinjiang,the greater social-economic development(such as in Karamay and Urumqi)was associated with the lower coupling degree between the two footprints.Increases in the water footprint will cause the ecological footprint to increase,such that a 1-unit increase in the consumption of water resources would lead to 2–3 units of ecological degradation.The quantitative relationship between the increases of the wate
基金supported by grants from the National Natural Science Foundation of the China Joint Key Program(No.U1703237)Postgraduate Research Innovation Project in the Autonomous Region(No.XJ2022G017)the National Natural Science Foundation of China Regional Program(No.32160260)。
文摘An oasis is a unique natural landscape in arid and semi-arid areas,significant for regulating regional microclimates and hydrological processes in deserts.However,little is known regarding the response of natural oasis plants communities to various environmental factors.Nineteen sample plots(50 m×50 m)were selected in the Daliyabuyi Oasis in the Taklimakan Desert hinterland based on the location of groundwater monitoring wells and 76 vegetation quadrats(25 m×25 m)were established.A two-way indicator species analysis,Mantel test,detrended correspondence analysis,canonical correspondence analysis(CCA),and hierarchical partitioning were used to provide an in-depth analysis of community classification,species composition,and environmental interpretation of the oasis.A generalized linear model was used to verify the results which showed that the current oasis community could be divided into four types according to the dominant species,which is controlled by soil moisture.Measurement of species composition and distribution of communities showed significant differences between species diversity of individual community types.Variations in groundwater depth affects patterns of species diversity which is sensitive to richness,while the degree of surface water disturbance affects the pattern of species evenness.Moreover,the CCA ordination map showed that community distribution and diversity characteristics have their own preferences in habitat gradients.The study concluded that the species dominance of the community and the composition and distribution are not dominated by a single factor.There are differences in the scale and effect of different water resource types in maintaining community characteristics.
基金This work was supported by the National Key R&D Program of China (Grant No 2018YFA0606402)National Natural Science Foundation of China (Grant No 41601587, 41671187)
文摘The human and natural factors complicit in the driving forces of oasis change have always received considerable interest from the international research community. In this study, we used principal component analysis of natural and socio-economic statistical factors to quantitatively analyze the causal relationships and their contributions to the observed periodic expansion or shrinkage of the Minqin Oasis over almost 60 years. Our results show that human factors were the dominant factors governing expansion or shrinkage, with average contributions of 69.38% and 76.16%, respectively. Moreover, policy decisions have been the pivotal human factors. Under the influence of various policies, we have found that water resource utilization, land reclamation, population explosion, ecological protection and economic development have each played leading roles in different periods. This study provides a scientific basis for modelling the dynamics of an oasis for sustainable management.