为了解决局部放电测量现场中信号淹没在周期性窄带干扰中的问题,文中提出一种应用于变压器局部放电在线监测系统的改进变步长最小均方(least mean square,LMS)自适应滤波算法,通过构造一个新型滤波函数结合实际情况中AD芯片量程自适应...为了解决局部放电测量现场中信号淹没在周期性窄带干扰中的问题,文中提出一种应用于变压器局部放电在线监测系统的改进变步长最小均方(least mean square,LMS)自适应滤波算法,通过构造一个新型滤波函数结合实际情况中AD芯片量程自适应调整步长,解决了传统LMS算法需要阶数和步长匹配、收敛性差、容易发散的缺点。通过改变滤波器阶数和参考信号时延,分析改进算法收敛速度及稳态误差,并对测试中发现时延为0的特殊情况进行了讨论分析,为高信噪比自适应滤波器设计提供了参考。改变新方法初始迭代步长同传统固定步长LMS算法的迭代过程进行了仿真对比,证明了新方法具有收敛速度快、不易发散的优点。最后,通过实验室搭建的变压器局放在线监测装置,对比分析了实测数据下传统LMS算法与本文算法的不同效果,通过对信噪比(SNR)、均方误差(MSE)和波形相似系数(NCC)三种指标对比,验证了新方法的优越性。展开更多
文摘为了解决局部放电测量现场中信号淹没在周期性窄带干扰中的问题,文中提出一种应用于变压器局部放电在线监测系统的改进变步长最小均方(least mean square,LMS)自适应滤波算法,通过构造一个新型滤波函数结合实际情况中AD芯片量程自适应调整步长,解决了传统LMS算法需要阶数和步长匹配、收敛性差、容易发散的缺点。通过改变滤波器阶数和参考信号时延,分析改进算法收敛速度及稳态误差,并对测试中发现时延为0的特殊情况进行了讨论分析,为高信噪比自适应滤波器设计提供了参考。改变新方法初始迭代步长同传统固定步长LMS算法的迭代过程进行了仿真对比,证明了新方法具有收敛速度快、不易发散的优点。最后,通过实验室搭建的变压器局放在线监测装置,对比分析了实测数据下传统LMS算法与本文算法的不同效果,通过对信噪比(SNR)、均方误差(MSE)和波形相似系数(NCC)三种指标对比,验证了新方法的优越性。