Rare earth complexes Eu(Phen)_2(TTA)(Bipy)(NO_3)_3 and Eu(L)_x(TTA)_(4-x)(NO_3)_3 (L=Phen or Bipy; x=4, 3, 2, 1, 0) solutions (1×10^(-3) mol·L^(-1)) were prepared in EtOH. The luminescent experimental result...Rare earth complexes Eu(Phen)_2(TTA)(Bipy)(NO_3)_3 and Eu(L)_x(TTA)_(4-x)(NO_3)_3 (L=Phen or Bipy; x=4, 3, 2, 1, 0) solutions (1×10^(-3) mol·L^(-1)) were prepared in EtOH. The luminescent experimental results show that the synergy effect of Phen and TTA exists in Eu^(3+) complexes. But when the ligands of Bipy and TTA coexist in europium complex, the synergy effect does not exist. If a solution of a europium complex has a specific electron configuration of excited state, the solution of the complex has an intensity of fluorescence and a quantum yield. 2.5×10^(-5) mol·L^(-1) Eu(Phen)_2(TTA)_2(NO_3)_3 solution (λ_(ex)=347.0 nm) possesses a maximal quantum yield (0.25) and the strongest fluorescent intensity. The nanosized mesoporous molecular sieves possess spherical cage structure that is fit for preparation of composite materials with encapsulation method. The research results of XRD and IR show that the guest molecule is encapsulated into the channels of the host. The thermostability of the guest molecule in the channels of the host (CH_3)_3Si-MCM-41 is enhanced. The fluorescent intensity and the half-life of nanosized composites of (CH_3)_3Si-MCM-41 and Eu^(3+) complexes are stronger and longer than those of encapsulation products of MCM-41 and Eu^(3+) complexes. Supramolecular encapsulation products emit characteristic radiation of Eu^(3+) ion, vesting in the transitions of (()~5D_0→()~7F_J) (J=0, 1, 2, 3, 4), respectively; each excitation peak of fluorescent spectra of the composites is assigned to an excited electron configuration of Eu^(3+) ion. The host with lipophilic channels is more favourable to fluorescence of the rare earth complex than hydrophilic mesoporous molecular sieve; The fluorescent intensity of (CH_3)_3Si-MCM-41-Eu(Phen)(TTA)_3(NO_3)_3 can match with that of Eu(Phen)(TTA)_3(NO_3)_3 powder sample. These results could be assumed to result from strong radiation absorption of the guest complex molecule (blue shift of maximum excitation wavelength), greatly reducing of silanol group vibra展开更多
Cu(NO3)(2) and (NH4)(6)H(2)W(12)O(40)center dot 4H(2)O were used to prepare W/Cu nanosized composite powder by sol-gel technique. The influences of heat treatment process, pH value of the solution and the amount of an...Cu(NO3)(2) and (NH4)(6)H(2)W(12)O(40)center dot 4H(2)O were used to prepare W/Cu nanosized composite powder by sol-gel technique. The influences of heat treatment process, pH value of the solution and the amount of an addition agent on particle size were investigated by DSC, XRD and TEM. The results show that, at a certain heat treatment temperature, the W/Cu nanoparticle size increases with the pH value or the amount of the addition agent increasing.展开更多
Indium tin oxide (ITO) nano-particles were prepared directly using waste ITO target, which had been coated by magnetron controlled sputtering. The waste ITO target was cleaned with de-ionized water, and then dissolv...Indium tin oxide (ITO) nano-particles were prepared directly using waste ITO target, which had been coated by magnetron controlled sputtering. The waste ITO target was cleaned with de-ionized water, and then dissolved in acid, filtrated, neutralized, manipulated through azeotropic distillation and finally dried, and in this way the precursor of indium tin hydroxide was obtained. The nanosized rio composite powder was prepared after the precursor heat-treated at 500℃ for 2 h. TEM images show a narrow distribution of particle size is 5-20 nm and the particle size can be controlled. Its granule has a spherical shape and the dispersion of the particle is well. X-ray diffraction (XRD) patterns indicate the only cubic In2O3 phase in the ITO powder hot-treated at 500℃. The purity of ITO composite powder is 99.9907%. The content of radium within filtrate was detected by using the EDTA titration of determination of indium in the ITO powder and ITO target. Appropriate amount of SnCl4.5H2O was dissolved in the filtrate, and then ITO powder containing 10 wt.% SnO2 was successfully prepared by heat-treating.展开更多
文摘Rare earth complexes Eu(Phen)_2(TTA)(Bipy)(NO_3)_3 and Eu(L)_x(TTA)_(4-x)(NO_3)_3 (L=Phen or Bipy; x=4, 3, 2, 1, 0) solutions (1×10^(-3) mol·L^(-1)) were prepared in EtOH. The luminescent experimental results show that the synergy effect of Phen and TTA exists in Eu^(3+) complexes. But when the ligands of Bipy and TTA coexist in europium complex, the synergy effect does not exist. If a solution of a europium complex has a specific electron configuration of excited state, the solution of the complex has an intensity of fluorescence and a quantum yield. 2.5×10^(-5) mol·L^(-1) Eu(Phen)_2(TTA)_2(NO_3)_3 solution (λ_(ex)=347.0 nm) possesses a maximal quantum yield (0.25) and the strongest fluorescent intensity. The nanosized mesoporous molecular sieves possess spherical cage structure that is fit for preparation of composite materials with encapsulation method. The research results of XRD and IR show that the guest molecule is encapsulated into the channels of the host. The thermostability of the guest molecule in the channels of the host (CH_3)_3Si-MCM-41 is enhanced. The fluorescent intensity and the half-life of nanosized composites of (CH_3)_3Si-MCM-41 and Eu^(3+) complexes are stronger and longer than those of encapsulation products of MCM-41 and Eu^(3+) complexes. Supramolecular encapsulation products emit characteristic radiation of Eu^(3+) ion, vesting in the transitions of (()~5D_0→()~7F_J) (J=0, 1, 2, 3, 4), respectively; each excitation peak of fluorescent spectra of the composites is assigned to an excited electron configuration of Eu^(3+) ion. The host with lipophilic channels is more favourable to fluorescence of the rare earth complex than hydrophilic mesoporous molecular sieve; The fluorescent intensity of (CH_3)_3Si-MCM-41-Eu(Phen)(TTA)_3(NO_3)_3 can match with that of Eu(Phen)(TTA)_3(NO_3)_3 powder sample. These results could be assumed to result from strong radiation absorption of the guest complex molecule (blue shift of maximum excitation wavelength), greatly reducing of silanol group vibra
基金This Project was financially supported by the National Natural Science Foundation of China (No. 50471033).
文摘Cu(NO3)(2) and (NH4)(6)H(2)W(12)O(40)center dot 4H(2)O were used to prepare W/Cu nanosized composite powder by sol-gel technique. The influences of heat treatment process, pH value of the solution and the amount of an addition agent on particle size were investigated by DSC, XRD and TEM. The results show that, at a certain heat treatment temperature, the W/Cu nanoparticle size increases with the pH value or the amount of the addition agent increasing.
基金This work was financially supported by the National "863 " program of China (No. 2004AA303542).
文摘Indium tin oxide (ITO) nano-particles were prepared directly using waste ITO target, which had been coated by magnetron controlled sputtering. The waste ITO target was cleaned with de-ionized water, and then dissolved in acid, filtrated, neutralized, manipulated through azeotropic distillation and finally dried, and in this way the precursor of indium tin hydroxide was obtained. The nanosized rio composite powder was prepared after the precursor heat-treated at 500℃ for 2 h. TEM images show a narrow distribution of particle size is 5-20 nm and the particle size can be controlled. Its granule has a spherical shape and the dispersion of the particle is well. X-ray diffraction (XRD) patterns indicate the only cubic In2O3 phase in the ITO powder hot-treated at 500℃. The purity of ITO composite powder is 99.9907%. The content of radium within filtrate was detected by using the EDTA titration of determination of indium in the ITO powder and ITO target. Appropriate amount of SnCl4.5H2O was dissolved in the filtrate, and then ITO powder containing 10 wt.% SnO2 was successfully prepared by heat-treating.