The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are crucial processes for energy conversion/storage systems, such as fuel cells, metal-air batteries, and water splitting. However, both reac...The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are crucial processes for energy conversion/storage systems, such as fuel cells, metal-air batteries, and water splitting. However, both reactions are severely restricted by their sluggish kinetics, thus requiring highly active, cost-effective, and durable electrocatalysts. Herein, we develop novel bifunctional nanocatalysts through surface nanoengineering of dealloying-driven nanoporous gold (NPG). Pd overlayers were precisely deposited onto the NPG ligament surface by epitaxial layer-by-layer growth. More importantly, the obtained NPG-Pd overlayer nanocatalysts exhibit remarkably enhanced electrocatalytic activities toward both the ORR and OER in alkaline media, benchmarked against a state- of-the-art Pt/C catalyst. The improved electrocatalytic performance is rationalized by the unique three-dimensional nanoarchitecture of NPG, enhanced Pd utilization efficiency from precise control of the Pd overlayers, and change in electronic structure, as revealed by density functional theory calculations.展开更多
Plasmonic metal-semiconductor nano-heterojuncfions (NHJs), with their superior photocatalytic performance, provide opportunities for the efficient utilization of solar energy. However, scientific significance and te...Plasmonic metal-semiconductor nano-heterojuncfions (NHJs), with their superior photocatalytic performance, provide opportunities for the efficient utilization of solar energy. However, scientific significance and technical challenges remain in the development of suitable metal-semiconductor NHJ photoelectrodes for new generation flexible optoelectronic devices, which often require complex processing. Herein, we report integrated three-dimensional (3D) NHJ photoelectrodes by conformally coating cadmium sulfide (CdS) nanolayers onto ultrathin nano- porous gold (NPG) films via a facile electrodeposition method. Localized surface plasmon resonance (LSPR) of NPG enhances the electron-hole pair generation and separation. Moreover, the direct contact interface and high conductive framework structure of the NHJs boosts the photogenerated carrier separation and transport. Hence, the NHJs exhibit evidently enhanced photocurrent density and hydrogen evolution rate relative to CdS deposited on either gold (Au) foil or fluorine-doped tin oxide (FTO) at 0 V vs. SCE (saturated calomel electrode) under visible-light irradiation. Moreover, they demonstrate a surprisingly stable photoelectrochemical hydrogen evolution (PEC-HE) activity over 104 s of continuous irradiation.展开更多
对纳米多孔金电极的电化学催化活性进行了研究,在1 mol/L Li PF6非水溶液中室温下采用电化学合金化/去合金化方法制备了纳米多孔金电极,然后使用循环伏安方法和计时电流方法研究了电极对乙醇的电化学催化活性。研究显示,在0.5 mol/L KOH...对纳米多孔金电极的电化学催化活性进行了研究,在1 mol/L Li PF6非水溶液中室温下采用电化学合金化/去合金化方法制备了纳米多孔金电极,然后使用循环伏安方法和计时电流方法研究了电极对乙醇的电化学催化活性。研究显示,在0.5 mol/L KOH+1.0 mol/L CH3CH2OH溶液中,制备的多孔电极在0和400 m V(vs SCE)对乙醇的电化学催化氧化电流密度超过光滑金电极的100倍以上,分别达到3.7和6.1 m A·cm-2。表明制备的纳米多孔金电极对乙醇具有良好的电化学催化氧化活性。展开更多
纳米多孔金(NPG)具有高曲率、高比表面积的结构特征,且比强度较高,作为一种结构功能一体化材料受到广泛关注。然而,影响NPG实际应用的最大障碍之一是其在拉伸作用下内部单根韧带失效导致的塑性失稳。过去的研究主要集中在宏观力学实验...纳米多孔金(NPG)具有高曲率、高比表面积的结构特征,且比强度较高,作为一种结构功能一体化材料受到广泛关注。然而,影响NPG实际应用的最大障碍之一是其在拉伸作用下内部单根韧带失效导致的塑性失稳。过去的研究主要集中在宏观力学实验的研究,无法直接观察单根韧带的塑性变形行为。随着原位透射电子显微镜(transmission electron microscopy,TEM)的发展,已具备从原子尺度研究NPG中单根韧带塑性变形过程的能力,这对理解NPG变形机理进而合理设计制备高塑性纳米多孔结构金属具有重要意义。本文主要以近几年利用球差校正透射电子显微镜(Cs⁃corrected TEM)原位原子尺度研究NPG塑性变形的系列工作为例,简要综述了NPG单根韧带在塑性变形过程中位错运动(攀移和滑移)和表面原子扩散行为的最新进展,并对纳米结构金属材料的未来研究进行了展望。展开更多
基金The authors gratefully acknowledge financial support by the National Basic Research Program of China (No. 2012CB932800), National Natural Science Foundation of China (Nos. 51371106 and 51222202), and Young Tip-top Talent Support Project (the Organization Department of the Central Committee of the CPC). The Institute of Materials of Ruhr University Bochum (Germany) is acknowledged for the support of SEM and TEM characterization. This work also made use of the resources of the Center of Electron Microscopy of Zhejiang University.
文摘The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are crucial processes for energy conversion/storage systems, such as fuel cells, metal-air batteries, and water splitting. However, both reactions are severely restricted by their sluggish kinetics, thus requiring highly active, cost-effective, and durable electrocatalysts. Herein, we develop novel bifunctional nanocatalysts through surface nanoengineering of dealloying-driven nanoporous gold (NPG). Pd overlayers were precisely deposited onto the NPG ligament surface by epitaxial layer-by-layer growth. More importantly, the obtained NPG-Pd overlayer nanocatalysts exhibit remarkably enhanced electrocatalytic activities toward both the ORR and OER in alkaline media, benchmarked against a state- of-the-art Pt/C catalyst. The improved electrocatalytic performance is rationalized by the unique three-dimensional nanoarchitecture of NPG, enhanced Pd utilization efficiency from precise control of the Pd overlayers, and change in electronic structure, as revealed by density functional theory calculations.
基金This work was financially supported by the National Natural Science Foundation of China (No. 51671145), the National Thousand Young Talents Program of China, the Tianjin Municipal Education Commission, the Tianjin Munidpal Science and Technology Commission (No. 16JCYBJC17000) and the Fundamental Research Funds of Tianjin University of Technology. We would like to thank Dr. Anna Carlsson from FEI Company for her assistance with the atomic-resolution structure and EELS analyses, and Y. D. also acknowledges useful discussions and experimental assistance from Dr. Yajun Gao, Dr. Rongyue Wang, Dr. Chuancheng Jia, Xuanxuan Bi, and Junli Liu.
文摘Plasmonic metal-semiconductor nano-heterojuncfions (NHJs), with their superior photocatalytic performance, provide opportunities for the efficient utilization of solar energy. However, scientific significance and technical challenges remain in the development of suitable metal-semiconductor NHJ photoelectrodes for new generation flexible optoelectronic devices, which often require complex processing. Herein, we report integrated three-dimensional (3D) NHJ photoelectrodes by conformally coating cadmium sulfide (CdS) nanolayers onto ultrathin nano- porous gold (NPG) films via a facile electrodeposition method. Localized surface plasmon resonance (LSPR) of NPG enhances the electron-hole pair generation and separation. Moreover, the direct contact interface and high conductive framework structure of the NHJs boosts the photogenerated carrier separation and transport. Hence, the NHJs exhibit evidently enhanced photocurrent density and hydrogen evolution rate relative to CdS deposited on either gold (Au) foil or fluorine-doped tin oxide (FTO) at 0 V vs. SCE (saturated calomel electrode) under visible-light irradiation. Moreover, they demonstrate a surprisingly stable photoelectrochemical hydrogen evolution (PEC-HE) activity over 104 s of continuous irradiation.
基金Fund of Guangxi Key Laboratory of Environmental Engineering,Protection and Assessment(0802Z014)Fund of Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection,Ministry of Education,China(ERESEPZ15)
文摘对纳米多孔金电极的电化学催化活性进行了研究,在1 mol/L Li PF6非水溶液中室温下采用电化学合金化/去合金化方法制备了纳米多孔金电极,然后使用循环伏安方法和计时电流方法研究了电极对乙醇的电化学催化活性。研究显示,在0.5 mol/L KOH+1.0 mol/L CH3CH2OH溶液中,制备的多孔电极在0和400 m V(vs SCE)对乙醇的电化学催化氧化电流密度超过光滑金电极的100倍以上,分别达到3.7和6.1 m A·cm-2。表明制备的纳米多孔金电极对乙醇具有良好的电化学催化氧化活性。
文摘纳米多孔金(NPG)具有高曲率、高比表面积的结构特征,且比强度较高,作为一种结构功能一体化材料受到广泛关注。然而,影响NPG实际应用的最大障碍之一是其在拉伸作用下内部单根韧带失效导致的塑性失稳。过去的研究主要集中在宏观力学实验的研究,无法直接观察单根韧带的塑性变形行为。随着原位透射电子显微镜(transmission electron microscopy,TEM)的发展,已具备从原子尺度研究NPG中单根韧带塑性变形过程的能力,这对理解NPG变形机理进而合理设计制备高塑性纳米多孔结构金属具有重要意义。本文主要以近几年利用球差校正透射电子显微镜(Cs⁃corrected TEM)原位原子尺度研究NPG塑性变形的系列工作为例,简要综述了NPG单根韧带在塑性变形过程中位错运动(攀移和滑移)和表面原子扩散行为的最新进展,并对纳米结构金属材料的未来研究进行了展望。
基金National Natural Science Foundation of China(51771121,51572173)Ability Construction of Local Colleges and Universities in Shanghai Municipal(16060502300,18511110600)