Highly active, stable and affordable surface enhanced Raman scattering (SERS) substrates were obtained by electrolyzing a mixture of AgNO3 (4 × 10^-4 mol/L) and Na3C6H5OTH2O (6 × 10^-5 mol/L) for 1, 2,...Highly active, stable and affordable surface enhanced Raman scattering (SERS) substrates were obtained by electrolyzing a mixture of AgNO3 (4 × 10^-4 mol/L) and Na3C6H5OTH2O (6 × 10^-5 mol/L) for 1, 2, 3 and 4 h at 7 V. With crystal violet (CV) as a test molecule, a portable Raman spectrometer with 785 nm laser excitation was employed to carry out the SERS detection. Colloidal Ag nanoparticles prepared by electrolyzing for 3 h with the particle size of (65 ±17) nm is a perfect SERS substrate for the ultratrace detection of CV, which displayed an enhancement factor of ca. 1.3 × 10^8 and the detection limit of CV is down to ca. 10-15 mol/L (ca. 10^-4 ppb) with 10^-1 mol/L KBr as aggregating agent. Thus, this SERS substrate will provide a hopeful foreground in ultratrace detection. Meanwhile, it will provide a possibility to bring Raman analysis out of the laboratory to process in situ, real-time detection and identification.展开更多
Acid phosphatase(ACP)is a ubiquitous phosphatase in living organisms.The abnormal variation of ACP is related to various diseases.Herein,we propose a colorimetric method based on CeO_(2)-modified gold core shell nanop...Acid phosphatase(ACP)is a ubiquitous phosphatase in living organisms.The abnormal variation of ACP is related to various diseases.Herein,we propose a colorimetric method based on CeO_(2)-modified gold core shell nanoparticles(Au@CeO_(2)NPs)to analyze ACP activity with high sensitivity and specificity.In this design,2-phospho-L-ascorbic acid trisodium salt(AAP)is dephosphorylated by ACP and produces reductive ascorbic acid(AA),which makes the CeO_(2)shell decomposition.A remarkable blue shift of localized surface plasmon resonance peak(LSPR,from yellow to green)along with the scattering intensity ratio changes from individual Au@CeO_(2)NPs are observed.ACP activity can be quantified by calculating the ratio changes of individual Au@CeO_(2)NPs.This assay reveals limit of detection(LOD)of 0.044 mU/mL and the linear range of 0.05–5.0 mU/mL,which are much lower than most of spectroscopic measurements in bulk solution.Furthermore,the recovery measurements in real samples are satisfactory and the capacity for practical application is demonstrated.As a consequence,Au@CeO_(2)NPs used in this assay will find new applications for the ultrasensitive detection of enzyme activity.展开更多
Nanogold particles in different sizes, from 5 to 60 nm, were utilized to modify the surface of the quartz crystal microbalance (QCM). It was found that the gold-particle size of the modified QCM affects both the amoun...Nanogold particles in different sizes, from 5 to 60 nm, were utilized to modify the surface of the quartz crystal microbalance (QCM). It was found that the gold-particle size of the modified QCM affects both the amount of the immobilization of the probe on the surface of QCM and the hybridization rate of the target DNA. 20 nm was determined to be the optimal size for the surface modification and it can maximally increase the sensitivity of the DNA detection.展开更多
The development of efficient methods for the detection of hazardous and toxic elements is extremely important for environmental security and public health. In this work, we developed a facile colorimetric assaying sys...The development of efficient methods for the detection of hazardous and toxic elements is extremely important for environmental security and public health. In this work, we developed a facile colorimetric assaying system for Ag+ detection in aqueous solution. Chitosan-stabilized platinum nanoparticles(ChPtNPs) were synthesized and severed as an artificial oxidase to catalyze the oxidation of the substrate3,30,5,50-tetramethylbenzidine(TMB) and generate color signal. In the presence of Ag+, due to the strong metallophilic interactions between Ag+ and Pt2+ on the surface of Ch-PtNPs, Ag+ can weaken the affinity to the substrates and inactivate the catalytic activity of Ch-PtNPs, leading to decreased absorbance signal to varying degrees depending on Ag+ amount. Combing the specific binding between Ch-PtNPs and Ag+ with signal amplification procedure based on the Ch-PtNPs-catalyzed TMB oxidation, a sensitive,selective, simple, cost-effective, and rapid detection method for Ag+ can be realized. Ag+ ions in tap and lake waters have been successfully detected. We ensured that the proposed method can be a potential alternative for Ag+ determination in environmental samples.展开更多
In this study, palladium nanoparticles loaded graphdiyne oxide (Pd/GDYO) nanocomposite were fabricated by in-situ reduction of palladium chloride in the dispersion of GDYO, and characte-rized by Raman spectra, transmi...In this study, palladium nanoparticles loaded graphdiyne oxide (Pd/GDYO) nanocomposite were fabricated by in-situ reduction of palladium chloride in the dispersion of GDYO, and characte-rized by Raman spectra, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The synthesized Pd/GDYO was first found to have catalytic activities similar to those of the peroxidase enzyme, which can catalyze the oxidation of peroxidase substrate 3,3',5,5'-tetramethylbenzidine(TMB) in the presence of hydrogen peroxide(H2O2). Steady-state kinetic studies showed that the catalytic reaction of Pd/GDYO follows a ping-pong mechanism, and Pd/GDYO has a stronger activity to TMB with a Michaelis constant(Km) value of 5.32×10-4 mmol/L. Based on the shielding effect of glutathione(GSH) on the Pd/GDYO-H2O2-TMB reaction system, a colorimetric detection method for GSH was deve-loped with a wide linear range from 0.1 μmol/L to 40 μmol/L and a limit of detection of 0.1 μmol/L. The method was successfully applied for fast and accurate detection of GSH in injection powder drugs. It was expected that this peroxidase-like Pd/GDYO nano- composite would have wide applications in the fields of biomedicine and environmental chemistry.展开更多
Development of electrochemical DNA hybridization biosensors based on carbon paste electrode (CPE) and gold nanoparticle modified carbon paste electrode (NGMCPE) as transducers and ethyl green (EG) as a new elect...Development of electrochemical DNA hybridization biosensors based on carbon paste electrode (CPE) and gold nanoparticle modified carbon paste electrode (NGMCPE) as transducers and ethyl green (EG) as a new electroac- tive label is described. Electrochemical impedance spectroscopy and cyclic voltammetry techniques were applied for the investigation and comparison of bare CPE and NGMCPE surfaces. Our voltammetric and spectroscopic studies showed gold nanoparticles are enable to facilitate electron transfer between the accumulated label on DNA probe modified electrode and electrode surface and enhance the electrical signals and lead to an improved detection limit. The immobilization of a 15-mer single strand oligonucleotide probe on the working electrodes and hybridiza- tion event between the probe and its complementary sequence as a target were investigated by differential pulse voltammetry (DPV) responses of the EG accumulated on the electrodes. The effects of some experimental variables on the performance of the biosensors were investigated and optimum conditions were suggested. The selectivity of the biosensors was studied using some non-complementary oligonucleotides. Finally the detection limits were calculated as 1.35×10^-10 mol/L and 5.16×10^-11 mol/L on the CPE and NEGCPE, respectively. In addition, the bio-sensors exhibited a good selectivity, reproducibility and stability for the determination of DNA sequences.展开更多
Early and accurate diagnosis and treatment of cancer depend on rapid,sensitive,and selective detection of tumor cells.Current diagnosis of cancers,especially leukemia,relies on histology and fl ow cytometry using sing...Early and accurate diagnosis and treatment of cancer depend on rapid,sensitive,and selective detection of tumor cells.Current diagnosis of cancers,especially leukemia,relies on histology and fl ow cytometry using single dye-labeled antibodies.However,this combination may not lead to high signal output,which can hinder detection,especially when the probes have relatively weak affi nities or when the receptor is expressed in a low concentration on the target cell surface.To solve these problems,we have developed a novel method for sensitive and rapid detection of cancer cells using dye-doped silica nanoparticles(NPs)which increases detection sensitivity in fl ow cytometry analyses between 10-and 100-fold compared to standard methods.Our NPs are~60 nm in size and can encapsulate thousands of individual dye molecules within their matrix.We have extensively investigated surface modifi cation strategies in order to make the NPs suitable for selective detection of cancer cells using fl ow cytometry.The NPs are functionalized with polyethylene glycol(PEG)to prevent nonspecifi c interactions and with neutravidin to allow universal binding with biotinylated molecules.By virtue of their reliable and selective detection of target cancer cells,these NPs have demonstrated their promising usefulness in conventional fl ow cytometry.Moreover,they have shown low background signal,high signal enhancement,and effi cient functionalization,either with antibody-or aptamer-targeting moieties.展开更多
基金supported by the National Natural Science Foundation of China(No.10864001)the Foundation of Science and Technology Department of Yunnan province(No.2005PY01-51)
文摘Highly active, stable and affordable surface enhanced Raman scattering (SERS) substrates were obtained by electrolyzing a mixture of AgNO3 (4 × 10^-4 mol/L) and Na3C6H5OTH2O (6 × 10^-5 mol/L) for 1, 2, 3 and 4 h at 7 V. With crystal violet (CV) as a test molecule, a portable Raman spectrometer with 785 nm laser excitation was employed to carry out the SERS detection. Colloidal Ag nanoparticles prepared by electrolyzing for 3 h with the particle size of (65 ±17) nm is a perfect SERS substrate for the ultratrace detection of CV, which displayed an enhancement factor of ca. 1.3 × 10^8 and the detection limit of CV is down to ca. 10-15 mol/L (ca. 10^-4 ppb) with 10^-1 mol/L KBr as aggregating agent. Thus, this SERS substrate will provide a hopeful foreground in ultratrace detection. Meanwhile, it will provide a possibility to bring Raman analysis out of the laboratory to process in situ, real-time detection and identification.
基金supported by the Natural Science Foundation of Hunan Province,China(No.2022JJ40266)the Open Research Fund of School of Chemistry and Chemical Engineering,Henan Normal University,China(No.2022A04).
文摘Acid phosphatase(ACP)is a ubiquitous phosphatase in living organisms.The abnormal variation of ACP is related to various diseases.Herein,we propose a colorimetric method based on CeO_(2)-modified gold core shell nanoparticles(Au@CeO_(2)NPs)to analyze ACP activity with high sensitivity and specificity.In this design,2-phospho-L-ascorbic acid trisodium salt(AAP)is dephosphorylated by ACP and produces reductive ascorbic acid(AA),which makes the CeO_(2)shell decomposition.A remarkable blue shift of localized surface plasmon resonance peak(LSPR,from yellow to green)along with the scattering intensity ratio changes from individual Au@CeO_(2)NPs are observed.ACP activity can be quantified by calculating the ratio changes of individual Au@CeO_(2)NPs.This assay reveals limit of detection(LOD)of 0.044 mU/mL and the linear range of 0.05–5.0 mU/mL,which are much lower than most of spectroscopic measurements in bulk solution.Furthermore,the recovery measurements in real samples are satisfactory and the capacity for practical application is demonstrated.As a consequence,Au@CeO_(2)NPs used in this assay will find new applications for the ultrasensitive detection of enzyme activity.
基金supported by the National Natural Science Foundation of China(Grant Nos.39990570 and 90206035)the Major State Basic Research and Development Program(Grant No.G2000078103).
文摘Nanogold particles in different sizes, from 5 to 60 nm, were utilized to modify the surface of the quartz crystal microbalance (QCM). It was found that the gold-particle size of the modified QCM affects both the amount of the immobilization of the probe on the surface of QCM and the hybridization rate of the target DNA. 20 nm was determined to be the optimal size for the surface modification and it can maximally increase the sensitivity of the DNA detection.
基金the financial support from the National Natural Science Foundation of China (Nos. 21075023, 21804021)the Program for Innovative Leading Talents in Fujian Province (No. 2016B016)+2 种基金the Joint Funds for the Innovation of Science and Technology, Fujian Province (No. 2016Y9056)the Natural Science Foundation of Fujian Province (No. 2017J01575)Startup Fund for Scientific Research, Fujian Medical University (No. 2017XQ1014)
文摘The development of efficient methods for the detection of hazardous and toxic elements is extremely important for environmental security and public health. In this work, we developed a facile colorimetric assaying system for Ag+ detection in aqueous solution. Chitosan-stabilized platinum nanoparticles(ChPtNPs) were synthesized and severed as an artificial oxidase to catalyze the oxidation of the substrate3,30,5,50-tetramethylbenzidine(TMB) and generate color signal. In the presence of Ag+, due to the strong metallophilic interactions between Ag+ and Pt2+ on the surface of Ch-PtNPs, Ag+ can weaken the affinity to the substrates and inactivate the catalytic activity of Ch-PtNPs, leading to decreased absorbance signal to varying degrees depending on Ag+ amount. Combing the specific binding between Ch-PtNPs and Ag+ with signal amplification procedure based on the Ch-PtNPs-catalyzed TMB oxidation, a sensitive,selective, simple, cost-effective, and rapid detection method for Ag+ can be realized. Ag+ ions in tap and lake waters have been successfully detected. We ensured that the proposed method can be a potential alternative for Ag+ determination in environmental samples.
基金supported by the National Natural Science Foundation of China(No.81573834)。
文摘In this study, palladium nanoparticles loaded graphdiyne oxide (Pd/GDYO) nanocomposite were fabricated by in-situ reduction of palladium chloride in the dispersion of GDYO, and characte-rized by Raman spectra, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The synthesized Pd/GDYO was first found to have catalytic activities similar to those of the peroxidase enzyme, which can catalyze the oxidation of peroxidase substrate 3,3',5,5'-tetramethylbenzidine(TMB) in the presence of hydrogen peroxide(H2O2). Steady-state kinetic studies showed that the catalytic reaction of Pd/GDYO follows a ping-pong mechanism, and Pd/GDYO has a stronger activity to TMB with a Michaelis constant(Km) value of 5.32×10-4 mmol/L. Based on the shielding effect of glutathione(GSH) on the Pd/GDYO-H2O2-TMB reaction system, a colorimetric detection method for GSH was deve-loped with a wide linear range from 0.1 μmol/L to 40 μmol/L and a limit of detection of 0.1 μmol/L. The method was successfully applied for fast and accurate detection of GSH in injection powder drugs. It was expected that this peroxidase-like Pd/GDYO nano- composite would have wide applications in the fields of biomedicine and environmental chemistry.
文摘Development of electrochemical DNA hybridization biosensors based on carbon paste electrode (CPE) and gold nanoparticle modified carbon paste electrode (NGMCPE) as transducers and ethyl green (EG) as a new electroac- tive label is described. Electrochemical impedance spectroscopy and cyclic voltammetry techniques were applied for the investigation and comparison of bare CPE and NGMCPE surfaces. Our voltammetric and spectroscopic studies showed gold nanoparticles are enable to facilitate electron transfer between the accumulated label on DNA probe modified electrode and electrode surface and enhance the electrical signals and lead to an improved detection limit. The immobilization of a 15-mer single strand oligonucleotide probe on the working electrodes and hybridiza- tion event between the probe and its complementary sequence as a target were investigated by differential pulse voltammetry (DPV) responses of the EG accumulated on the electrodes. The effects of some experimental variables on the performance of the biosensors were investigated and optimum conditions were suggested. The selectivity of the biosensors was studied using some non-complementary oligonucleotides. Finally the detection limits were calculated as 1.35×10^-10 mol/L and 5.16×10^-11 mol/L on the CPE and NEGCPE, respectively. In addition, the bio-sensors exhibited a good selectivity, reproducibility and stability for the determination of DNA sequences.
基金by the NIH National Cancer Institute,R21CA122648,ONR N00014-07-1-0982,and the State of Florida Center of Excellence.M.-C.E.acknowledges fi nancial support from the Department d’Universitats,Recerca i Societat de la Informacióde la Generalitat de Catalunya,Spain.
文摘Early and accurate diagnosis and treatment of cancer depend on rapid,sensitive,and selective detection of tumor cells.Current diagnosis of cancers,especially leukemia,relies on histology and fl ow cytometry using single dye-labeled antibodies.However,this combination may not lead to high signal output,which can hinder detection,especially when the probes have relatively weak affi nities or when the receptor is expressed in a low concentration on the target cell surface.To solve these problems,we have developed a novel method for sensitive and rapid detection of cancer cells using dye-doped silica nanoparticles(NPs)which increases detection sensitivity in fl ow cytometry analyses between 10-and 100-fold compared to standard methods.Our NPs are~60 nm in size and can encapsulate thousands of individual dye molecules within their matrix.We have extensively investigated surface modifi cation strategies in order to make the NPs suitable for selective detection of cancer cells using fl ow cytometry.The NPs are functionalized with polyethylene glycol(PEG)to prevent nonspecifi c interactions and with neutravidin to allow universal binding with biotinylated molecules.By virtue of their reliable and selective detection of target cancer cells,these NPs have demonstrated their promising usefulness in conventional fl ow cytometry.Moreover,they have shown low background signal,high signal enhancement,and effi cient functionalization,either with antibody-or aptamer-targeting moieties.