期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Nanomechanical Behaviour of the Membranous Wings of Dragonfly Pantala flavescens Fabricius 被引量:6
1
作者 Yanru Zhao Dongsheng Wang +1 位作者 Jin Tong Jiyu Sun 《Journal of Bionic Engineering》 SCIE EI CSCD 2016年第3期388-396,共9页
The dragonfly has excellent flying capacity and its wings are typical 2-dimensional composite materials in micro-scale or nano-scale. The nanomechanical behavior of dragonfly membranous wings was investigated with a n... The dragonfly has excellent flying capacity and its wings are typical 2-dimensional composite materials in micro-scale or nano-scale. The nanomechanical behavior of dragonfly membranous wings was investigated with a nanoindenter. It was shown that the maxima of the reduced modulus and nanohardness of the in-vivo and fresh dragonfly wings are about at position of 0.7L, where L is the wing length. It was found that the reduced modulus and nanohardness of radius of the wings of dragonfly are large. The reduced modulus and nanohardness of Costa, Radius and Postal veins of the in-vivo dragonfly wings are larger than those of the fresh ones. The deformation, stress and strain under the uniform load were analyzed with finite element simulation software ANSYS. The deformation is little and the distribution trend of the strain is probably in agreement with that of the stress. It is shown that the main veins have better stabilities and load-bearing capacities. The understanding of dragonfly wings' nanomechanical properties would provide some references for improving some properties of 2-dimentional composite materials through the biomimetic designs. The realization of nanomechanical properties of dragonfly wings will provide inspirations for designing some new structures and materials of mechanical parts. 展开更多
关键词 Pantala flavescens Fabricius membranous wing experimental optimization design NANOINDENTATION nanome-chanieal property
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部