An experimental system is built to investigate convective heat transfer and flow characteristics of the nanofluid in a tube. Both the convective heat transfer coefficient and friction factor of Cu-water nanofluid for ...An experimental system is built to investigate convective heat transfer and flow characteristics of the nanofluid in a tube. Both the convective heat transfer coefficient and friction factor of Cu-water nanofluid for the laminar and turbulent flow are measured. The effects of such factors as the volume fraction of suspended nanoparticles and the Reynolds number on the heat transfer and flow characteristics are discussed in detail. The experimental results show that the suspended nanoparticles remarkably increase the convective heat transfer coefficient of the base fluid and show that the friction factor of the sample nanofluid with the low volume fraction of nanoparticles is almost not changed. Compared with the base fluid, for example, the convective heat transfer coefficient is increased about 60% for the nanofluid with 2.0 vol% Cu nanoparticles at the same Reynolds number. Considering the factors affecting the convective heat transfer coefficient of the nano- fluid, a new convective heat transfer correlation for nanofluid under single-phase flows in tubes is established. Comparison between the experimental data and the calculated results indicate that the correlation describes correctly the energy transport of the nanofluid.展开更多
Heat transfer and entropy generation of developing laminar forced convection flow of water-Al_2O_3 nanofluid in a concentric annulus with constant heat flux on the walls is investigated numerically. In order to determ...Heat transfer and entropy generation of developing laminar forced convection flow of water-Al_2O_3 nanofluid in a concentric annulus with constant heat flux on the walls is investigated numerically. In order to determine entropy generation of fully developed flow, two approaches are employed and it is shown that only one of these methods can provide appropriate results for flow inside annuli. The effects of concentration of nanoparticles, Reynolds number and thermal boundaries on heat transfer enhancement and entropy generation of developing laminar flow inside annuli with different radius ratios and same cross sectional areas are studied. The results show that radius ratio is a very important decision parameter of an annular heat exchanger such that in each Re, there is an optimum radius ratio to maximize Nu and minimize entropy generation. Moreover, the effect of nanoparticles concentration on heat transfer enhancement and minimizing entropy generation is stronger at higher Reynolds.展开更多
Nanoparticles have already gained attentions for their countless potential applications in enhanced oil recovery.Nano-sized particles would help to recover trapped oil by several mechanisms including interfacial tensi...Nanoparticles have already gained attentions for their countless potential applications in enhanced oil recovery.Nano-sized particles would help to recover trapped oil by several mechanisms including interfacial tension reduction, impulsive emulsion formation and wettability alteration of porous media. The presence of dispersed nanoparticles in injected fluids would enhance the recovery process through their movement towards oil–water interface. This would cause the interfacial tension to be reduced. In this research, the effects of different types of nanoparticles and different nanoparticle concentrations on EOR processes were investigated. Different flooding experiments were investigated to reveal enhancing oil recovery mechanisms. The results showed that nanoparticles have the ability to reduce the IFT as well as contact angle, making the solid surface to more water wet. As nanoparticle concentration increases more trapped oil was produced mainly due to wettability alteration to water wet and IFT reduction. However, pore blockage was also observed due to adsorption of nanoparticles, a phenomenon which caused the injection pressure to increase. Nonetheless, such higher injection pressure could displace some trapped oil in the small pore channels out of the model. The investigated results gave a clear indication that the EOR potential of nanoparticle fluid is significant.展开更多
In nanofluid minimum quantity lubrication(NMQL)milling of aviation aluminum alloy,it is the bottleneck problem to adjust the position parameters(target distance,incidence angle,and elevation angle)of the nozzle to imp...In nanofluid minimum quantity lubrication(NMQL)milling of aviation aluminum alloy,it is the bottleneck problem to adjust the position parameters(target distance,incidence angle,and elevation angle)of the nozzle to improve the surface roughness of milling,which has large and uncontrollable errors.In this paper,the influence law of milling cutter speed,helical angle,and cavity shape on the flow field around the milling cutter was studied,and the optimal nozzle profile parameters were obtained.Using 7050 aluminum alloy as the workpiece material,the milling experiment of the NMQL cavity was conducted by utilizing cottonseed oil-based Al2 O3 nanofluid.Results show that the high velocity of the surrounding air flow field and the strong gas barrier could be attributed to high rotating velocities of the milling cutter.The incidence angle of the nozzle was consistent with the helical angle of the milling cutter,the target distance was appropriate at 25–30 mm,and the elevation angle was suitable at 60°–65°.The range and variance analyses of the signal-to-noise ratio of milling force and roughness were performed,and the chip morphology was observed and analyzed.The results show that the optimal combination of nozzle position parameters was the target distance of 30 mm,the incidence angle of 35°,and the elevation angle of 60°.Among these parameters,target distance had the largest impact on cutting performance with a contribution rate of more than 55%,followed by incidence angle and elevation contribution rate.Analysis by orthogonal experiment revealed that the nozzle position parameters were appropriate,and Ra(0.087 lm)was reduced by 30.4%from the maximum value(0.125 lm).Moreover,Rsm(0.05 mm)was minimum,which was 36%lower than that of the seventh group(Rsm=0.078 mm).展开更多
基金This was supported by the National Natural Science Foundation of China (Grant No. 50176018)and the Ministry of Education of China.
文摘An experimental system is built to investigate convective heat transfer and flow characteristics of the nanofluid in a tube. Both the convective heat transfer coefficient and friction factor of Cu-water nanofluid for the laminar and turbulent flow are measured. The effects of such factors as the volume fraction of suspended nanoparticles and the Reynolds number on the heat transfer and flow characteristics are discussed in detail. The experimental results show that the suspended nanoparticles remarkably increase the convective heat transfer coefficient of the base fluid and show that the friction factor of the sample nanofluid with the low volume fraction of nanoparticles is almost not changed. Compared with the base fluid, for example, the convective heat transfer coefficient is increased about 60% for the nanofluid with 2.0 vol% Cu nanoparticles at the same Reynolds number. Considering the factors affecting the convective heat transfer coefficient of the nano- fluid, a new convective heat transfer correlation for nanofluid under single-phase flows in tubes is established. Comparison between the experimental data and the calculated results indicate that the correlation describes correctly the energy transport of the nanofluid.
文摘Heat transfer and entropy generation of developing laminar forced convection flow of water-Al_2O_3 nanofluid in a concentric annulus with constant heat flux on the walls is investigated numerically. In order to determine entropy generation of fully developed flow, two approaches are employed and it is shown that only one of these methods can provide appropriate results for flow inside annuli. The effects of concentration of nanoparticles, Reynolds number and thermal boundaries on heat transfer enhancement and entropy generation of developing laminar flow inside annuli with different radius ratios and same cross sectional areas are studied. The results show that radius ratio is a very important decision parameter of an annular heat exchanger such that in each Re, there is an optimum radius ratio to maximize Nu and minimize entropy generation. Moreover, the effect of nanoparticles concentration on heat transfer enhancement and minimizing entropy generation is stronger at higher Reynolds.
文摘Nanoparticles have already gained attentions for their countless potential applications in enhanced oil recovery.Nano-sized particles would help to recover trapped oil by several mechanisms including interfacial tension reduction, impulsive emulsion formation and wettability alteration of porous media. The presence of dispersed nanoparticles in injected fluids would enhance the recovery process through their movement towards oil–water interface. This would cause the interfacial tension to be reduced. In this research, the effects of different types of nanoparticles and different nanoparticle concentrations on EOR processes were investigated. Different flooding experiments were investigated to reveal enhancing oil recovery mechanisms. The results showed that nanoparticles have the ability to reduce the IFT as well as contact angle, making the solid surface to more water wet. As nanoparticle concentration increases more trapped oil was produced mainly due to wettability alteration to water wet and IFT reduction. However, pore blockage was also observed due to adsorption of nanoparticles, a phenomenon which caused the injection pressure to increase. Nonetheless, such higher injection pressure could displace some trapped oil in the small pore channels out of the model. The investigated results gave a clear indication that the EOR potential of nanoparticle fluid is significant.
基金the National Natural Science Foundation of China(Nos.51975305,51806112and 51905289)the Major Research Project of Shandong Province of China(Nos.2019GGX104040 and 2019GSF108236)+2 种基金the Shandong Provincial Natural Science Foundation of China(No.ZR2019PEE008)Major Science and Technology Innovation Engineering Projects of Shandong Province of China(No.2019JZZY020111)Applied Basic Research Youth Project of Qingdao Science and Technology Plan of China(No.19-6-2-63-cg)。
文摘In nanofluid minimum quantity lubrication(NMQL)milling of aviation aluminum alloy,it is the bottleneck problem to adjust the position parameters(target distance,incidence angle,and elevation angle)of the nozzle to improve the surface roughness of milling,which has large and uncontrollable errors.In this paper,the influence law of milling cutter speed,helical angle,and cavity shape on the flow field around the milling cutter was studied,and the optimal nozzle profile parameters were obtained.Using 7050 aluminum alloy as the workpiece material,the milling experiment of the NMQL cavity was conducted by utilizing cottonseed oil-based Al2 O3 nanofluid.Results show that the high velocity of the surrounding air flow field and the strong gas barrier could be attributed to high rotating velocities of the milling cutter.The incidence angle of the nozzle was consistent with the helical angle of the milling cutter,the target distance was appropriate at 25–30 mm,and the elevation angle was suitable at 60°–65°.The range and variance analyses of the signal-to-noise ratio of milling force and roughness were performed,and the chip morphology was observed and analyzed.The results show that the optimal combination of nozzle position parameters was the target distance of 30 mm,the incidence angle of 35°,and the elevation angle of 60°.Among these parameters,target distance had the largest impact on cutting performance with a contribution rate of more than 55%,followed by incidence angle and elevation contribution rate.Analysis by orthogonal experiment revealed that the nozzle position parameters were appropriate,and Ra(0.087 lm)was reduced by 30.4%from the maximum value(0.125 lm).Moreover,Rsm(0.05 mm)was minimum,which was 36%lower than that of the seventh group(Rsm=0.078 mm).