期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Box-Behnken设计-效应面法优化白屈菜红碱mPEG-PLGA纳米粒处方制备工艺及其药动学研究 被引量:10
1
作者 刘万路 《中草药》 CAS CSCD 北大核心 2022年第23期7361-7371,共11页
目的 Box-Behnken设计-效应面法优化白屈菜红碱单甲氧基聚乙二醇-聚乳酸羟基乙酸共聚物(methoxy poly(ethylene glycol)-poly(lactic-co-glycolic acid,m PEG-PLGA))纳米粒[chelerythrine mPEG-PLGA nanoparticles,Che@m PEG-PLGA/NPs]... 目的 Box-Behnken设计-效应面法优化白屈菜红碱单甲氧基聚乙二醇-聚乳酸羟基乙酸共聚物(methoxy poly(ethylene glycol)-poly(lactic-co-glycolic acid,m PEG-PLGA))纳米粒[chelerythrine mPEG-PLGA nanoparticles,Che@m PEG-PLGA/NPs]处方,并对最佳处方进行体外评价及体内药动学研究。方法 纳米沉淀法制备Che@m PEG-PLGA/NPs,以包封率、载药量和粒径为指标,采用单因素试验结合Box-Behnken设计-效应面法筛选Che@m PEG-PLGA/NPs的最佳处方。将Che@mPEGPLGA/NPs混悬液进一步制备成冻干粉,并考察冻干粉的稳定性和体外释药行为。SD大鼠分为Che原料药组、物理混合物组和Che@m PEG-PLGA/NPs组,分别按20 mg/kg剂量ig后采血,HPLC法测定血药浓度,计算主要药动学参数及相对生物利用度。结果 Che@m PEG-PLGA/NPs最佳处方为mPEG-PLGA用量572 mg、水相与有机相的体积比为2.3∶1、泊洛沙姆188用量为1.2%。Che@m PEG-PLGA/NPs的包封率为(83.49±1.59)%,载药量为(4.61±0.14)%,粒径为(163.93±8.02)nm。Che@m PEG-PLGA/NPs在不同pH值释药介质中的体外释药具有明显的缓释特征。药动学结果显示,Che@mPEGPLGA/NPs的达峰时间(t_(max))延后至(2.12±0.46)h,半衰期(t_(1/2))延长至(5.66±0.93)h,达峰浓度(C_(max))增加至4.49倍,相对口服吸收生物利用度提高至4.66倍。结论 Che@m PEG-PLGA/NPs可显著提高Che的口服吸收生物利用度,值得进一步研究。 展开更多
关键词 白屈菜红碱 mPEG-PLGA 纳米粒 Box-Behnken设计-效应面法 缓释 药动学 口服生物利用度 纳米沉淀法
原文传递
柚皮素-PLGA纳米粒的制备及其体内药动学研究 被引量:8
2
作者 王晓明 张智强 《中成药》 CAS CSCD 北大核心 2022年第2期356-362,共7页
目的制备柚皮素-PLGA纳米粒,并考察其体内药动学。方法纳米沉淀法制备PLGA纳米粒,在单因素试验基础上采用正交试验优化处方,测定包封率、载药量、粒径、Zeta电位、体外释药。大鼠分别灌胃给予柚皮素及其PLGA纳米粒混悬液(40 mg/kg)后采... 目的制备柚皮素-PLGA纳米粒,并考察其体内药动学。方法纳米沉淀法制备PLGA纳米粒,在单因素试验基础上采用正交试验优化处方,测定包封率、载药量、粒径、Zeta电位、体外释药。大鼠分别灌胃给予柚皮素及其PLGA纳米粒混悬液(40 mg/kg)后采血,HPLC法测定柚皮素血药浓度,计算主要药动学参数。结果最佳处方为PLGA型号75∶25,药物与载体比例1∶14,油相与水相比例1∶8,泊洛沙姆188质量分数0.75%。所得柚皮素-PLGA纳米粒包封率为(84.06±1.66)%,载药量为(5.21±0.53)%,平均粒径为(203.51±8.14)nm,Zeta电位为(-34.2±3.0)mV,36 h内累积释放度达81.07%,体外释药符合Weibull模型(r=0.987 2)。与原料药比较,PLGA纳米粒t_(max)延长(P<0.01),C_(max)、AUC_(0~)_(t)、AUC_(0~∞)升高(P<0.01),相对生物利用度增加至4.12倍。结论 PLGA纳米粒可明显改善柚皮素口服生物利用度。 展开更多
关键词 柚皮素 PLGA纳米粒 制备工艺 药动学 纳米沉淀法 HPLC
下载PDF
橙皮苷磷脂复合物纳米混悬剂的制备、表征及口服药动学研究 被引量:3
3
作者 李茜 张文周 郝海军 《中草药》 CAS CSCD 北大核心 2022年第24期7740-7750,共11页
目的 制备橙皮苷磷脂复合物(hesperidin phospholipids complex,HD-PC)纳米混悬剂(HD-PC nanosuspensions,HD-PC-NPs),并考察在SD大鼠体内口服药动学行为。方法 将橙皮苷制备成HD-PC,以提高橙皮苷溶解度。采用纳米沉淀-高压均质法制备HD... 目的 制备橙皮苷磷脂复合物(hesperidin phospholipids complex,HD-PC)纳米混悬剂(HD-PC nanosuspensions,HD-PC-NPs),并考察在SD大鼠体内口服药动学行为。方法 将橙皮苷制备成HD-PC,以提高橙皮苷溶解度。采用纳米沉淀-高压均质法制备HD-PC-NPs。在单因素实验基础上,以稳定剂与HD-PC用量比、高压均质压力和均质次数为主要影响因素,粒径、PDI值和ζ电位的总评归一值(OV)作为考察指标,采用Box-Behnken设计-效应面法优化HD-PC-NPs制备工艺,并制备成冻干粉末。采用透射电子显微镜(TEM)观察HD-PC-NPs形态,透析袋法考察药物释放情况。SD大鼠分为橙皮苷混悬液组、HD-PC组和HD-PC-NPs组,HPLC法测定大鼠血浆中的橙皮苷质量浓度,计算主要药动学参数及相对口服吸收生物利用度。结果 HD-PC-NPs的最处方工艺为稳定剂与HD-PC用量比为3.2,均质压力95 MPa,均质次数为10次,制备温度为50℃。5%甘露醇制得的冻干粉末外观饱满。HD-PC-NPs呈球形或类球形,平均粒径为(268.62±18.14)nm,PDI为0.122±0.013,ζ电位为(-31.79±1.37)m V。HD-PC-NPs将橙皮苷的溶解度提高至77.06倍,6 h累积释放率达到94.68%。药动学结果显示,HD-PC-NPs达峰时间显著性提前,半衰期(t1/2)延长至(5.69±0.82)h,达峰浓度(Cmax)提高至(1 213.96±149.88)ng/mL,相对口服生物利用度提高至3.09倍。结论 HD-PC-NPs可提高橙皮苷溶解度,促进药物体外溶出及体内吸收。 展开更多
关键词 橙皮苷 磷脂复合物 纳米混悬剂 Box-Behnken设计-效应面法 生物利用度 纳米沉淀-高压均质法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部