外泌体是一系列胞外囊泡,是生物标志物的来源,但目前尚无灵敏高效的唾液外泌体蛋白质分离方法。本研究采用质谱方法比较唾液外泌体试剂盒(Exo Quick,EQ)方法和超高速离心(Ultracentrifugation,UC)方法分离外泌体的效果以及尿素缓冲液、R...外泌体是一系列胞外囊泡,是生物标志物的来源,但目前尚无灵敏高效的唾液外泌体蛋白质分离方法。本研究采用质谱方法比较唾液外泌体试剂盒(Exo Quick,EQ)方法和超高速离心(Ultracentrifugation,UC)方法分离外泌体的效果以及尿素缓冲液、RIPA裂解液、SDS裂解液提取外泌体蛋白质的效果。Brodford法和BCA定量测定结果表明,EQ方法分离0.5 m L唾液外泌体得到的蛋白质含量高于UC方法分离2 m L唾液所得到的蛋白质。进一步的质谱分析表明,前者鉴定到的蛋白质数目亦多于后者;试剂盒分离唾液外泌体与尿素缓冲液提取外泌体蛋白质的方法联用效果最佳,鉴定到194种蛋白质。本方法重现性好、样品用量少、检测结果稳定,可为在唾液外泌体中筛选疾病的标志物提供方法学参考。展开更多
Chirality is one of the fundamental attributes of nature, which exists in different or even completely opposite metabolic,toxicological and pharmacological properties in organisms. Consequently, obtaining enantiomeric...Chirality is one of the fundamental attributes of nature, which exists in different or even completely opposite metabolic,toxicological and pharmacological properties in organisms. Consequently, obtaining enantiomerically pure drugs or optically active intermediates is highly desired in many fields like medicine, food and biochemistry. Thereby, it also promoted the development of various enantiomer selective separation techniques. Among the many chiral separation methods, chiral mobile phase additives(CMPAs) are widely used in various chromatographic techniques due to their simple operation,good versatility and low price. There have been a number of reviews on the research progress of CMPAs in last 2 decades,but they only reviewed the application of CMPAs in one specific chromatographic technique. Therefore, to provide a more comprehensive illustration of CMPAs in separation technology, their applications in high-performance liquid chromatography, capillary electrophoresis, countercurrent chromatography, nano-liquid chromatography were summarized and their advantages and disadvantages were briefly introduced in this critical review. The application of molecular simulation in the study of chiral separation mechanism was briefly summarized. We expect that it will provide researchers with the latest developments in this field and potential inspirations.展开更多
文摘外泌体是一系列胞外囊泡,是生物标志物的来源,但目前尚无灵敏高效的唾液外泌体蛋白质分离方法。本研究采用质谱方法比较唾液外泌体试剂盒(Exo Quick,EQ)方法和超高速离心(Ultracentrifugation,UC)方法分离外泌体的效果以及尿素缓冲液、RIPA裂解液、SDS裂解液提取外泌体蛋白质的效果。Brodford法和BCA定量测定结果表明,EQ方法分离0.5 m L唾液外泌体得到的蛋白质含量高于UC方法分离2 m L唾液所得到的蛋白质。进一步的质谱分析表明,前者鉴定到的蛋白质数目亦多于后者;试剂盒分离唾液外泌体与尿素缓冲液提取外泌体蛋白质的方法联用效果最佳,鉴定到194种蛋白质。本方法重现性好、样品用量少、检测结果稳定,可为在唾液外泌体中筛选疾病的标志物提供方法学参考。
基金financially funded by the National Key R&D Program of China(2019YFC1905500)the National Natural Science Foundation of China(21922409,21976131)Tianjin Research Program of Application Foundation and Advanced Technology(18JCZDJC37500)
文摘Chirality is one of the fundamental attributes of nature, which exists in different or even completely opposite metabolic,toxicological and pharmacological properties in organisms. Consequently, obtaining enantiomerically pure drugs or optically active intermediates is highly desired in many fields like medicine, food and biochemistry. Thereby, it also promoted the development of various enantiomer selective separation techniques. Among the many chiral separation methods, chiral mobile phase additives(CMPAs) are widely used in various chromatographic techniques due to their simple operation,good versatility and low price. There have been a number of reviews on the research progress of CMPAs in last 2 decades,but they only reviewed the application of CMPAs in one specific chromatographic technique. Therefore, to provide a more comprehensive illustration of CMPAs in separation technology, their applications in high-performance liquid chromatography, capillary electrophoresis, countercurrent chromatography, nano-liquid chromatography were summarized and their advantages and disadvantages were briefly introduced in this critical review. The application of molecular simulation in the study of chiral separation mechanism was briefly summarized. We expect that it will provide researchers with the latest developments in this field and potential inspirations.