The thermal performance of nano fluid containing Ag NPs with different stabilizers was studied in detail. The wall temperature distributions of the heat pipe containing pure water and a small amount of PAN/Ag, PVP/Ag,...The thermal performance of nano fluid containing Ag NPs with different stabilizers was studied in detail. The wall temperature distributions of the heat pipe containing pure water and a small amount of PAN/Ag, PVP/Ag, L-cys/Ag, and OA/Ag were determined, respectively. With the addition of a small amount ofAg NPs in the pure water, the heat pipe wall temperature became lower than that of pipes filled with pure water. The efficiency under the same conditions was ranked as PVP/Ag 〉 L-cys/Ag 〉 PAN/Ag 〉 OA/ Ag. After adding a small amount of CNT in the mixture, the effect was enhanced further. As more CNT became dispersed in the working fluid, the opposite effect was observed. Therefore, the optimal amount is 4 mg/L CNT in nano-fluid. Ag nano fluid could form the multi-scaled surface with higher wettability and spreadability. The wettability of nano-fluid was improved with the addition of a small amount of CNT in the mixture. However, the spreadability of the mixture would decrease significantly in the presence of more CNT.展开更多
The dynamics of fluid flow through nanochannels is different from those in macroscopic systems. By using the molecular dynamics simulations, we investigate the influence of surface polarity of nanotube on the transpor...The dynamics of fluid flow through nanochannels is different from those in macroscopic systems. By using the molecular dynamics simulations, we investigate the influence of surface polarity of nanotube on the transport properties of the water fluid. The nanotube used here resembles the carbon nanotube, but carries charges of q on some atoms; overall, the nanotube is charge-neutral. Our simulation results show that water flux decreases sharply with the increasing of q for q 〈 1.6 e; however, the water flux for shells far away from nanotube wM1 increases slightly when q 〉 1.6 e. The mechanism behind the interesting phenomenon is discussed. Our findings may have implications for development of nano-fluidic devices and for understanding the movement of confined fluid inside the hydrophilic nanochannel.展开更多
Flow and heat transfer analysis of an electrically conducting MHD power law nano fluid is carried out through annular sector duct,under the influence of constant pressure gradient.Two types of nano particles(i.e.Cu an...Flow and heat transfer analysis of an electrically conducting MHD power law nano fluid is carried out through annular sector duct,under the influence of constant pressure gradient.Two types of nano particles(i.e.Cu and TiO2)are used in power law nano fluid.Strongly implicit procedure,(SIP)is used to simulate the discretized coupled algebraic equations.It has been observed that volume fraction of nano particles,ϕand magnetic field parameter,Ha are favourable for the heat transfer rate,however,both resist the fluid flow.Impact of applied uniform transverse magnetic field exceeds in the case of shear thickening fluids(i.e.n>1)by increasing the value of Ha as compared to that in shear thinning fluids(i.e.n<1).Therefore,enhancement in heat transfer rate is comparably more in shear thickening fluid.Furthermore,comparable limiting case study with published result is also carried out in this research paper.展开更多
基金Funded by the Program of Introducing Talents of Discipline to Universities(No.B13009)
文摘The thermal performance of nano fluid containing Ag NPs with different stabilizers was studied in detail. The wall temperature distributions of the heat pipe containing pure water and a small amount of PAN/Ag, PVP/Ag, L-cys/Ag, and OA/Ag were determined, respectively. With the addition of a small amount ofAg NPs in the pure water, the heat pipe wall temperature became lower than that of pipes filled with pure water. The efficiency under the same conditions was ranked as PVP/Ag 〉 L-cys/Ag 〉 PAN/Ag 〉 OA/ Ag. After adding a small amount of CNT in the mixture, the effect was enhanced further. As more CNT became dispersed in the working fluid, the opposite effect was observed. Therefore, the optimal amount is 4 mg/L CNT in nano-fluid. Ag nano fluid could form the multi-scaled surface with higher wettability and spreadability. The wettability of nano-fluid was improved with the addition of a small amount of CNT in the mixture. However, the spreadability of the mixture would decrease significantly in the presence of more CNT.
基金supported by the National Natural Science Foundation of China (11005093,10932010,11072220,11072229,U1262109,51176172,and 10972208)the Zhejiang Provincial Natural Science (Z6090556,Y6100384)Project of Educational Department of Zhejiang Province(Y200909221)
文摘The dynamics of fluid flow through nanochannels is different from those in macroscopic systems. By using the molecular dynamics simulations, we investigate the influence of surface polarity of nanotube on the transport properties of the water fluid. The nanotube used here resembles the carbon nanotube, but carries charges of q on some atoms; overall, the nanotube is charge-neutral. Our simulation results show that water flux decreases sharply with the increasing of q for q 〈 1.6 e; however, the water flux for shells far away from nanotube wM1 increases slightly when q 〉 1.6 e. The mechanism behind the interesting phenomenon is discussed. Our findings may have implications for development of nano-fluidic devices and for understanding the movement of confined fluid inside the hydrophilic nanochannel.
文摘Flow and heat transfer analysis of an electrically conducting MHD power law nano fluid is carried out through annular sector duct,under the influence of constant pressure gradient.Two types of nano particles(i.e.Cu and TiO2)are used in power law nano fluid.Strongly implicit procedure,(SIP)is used to simulate the discretized coupled algebraic equations.It has been observed that volume fraction of nano particles,ϕand magnetic field parameter,Ha are favourable for the heat transfer rate,however,both resist the fluid flow.Impact of applied uniform transverse magnetic field exceeds in the case of shear thickening fluids(i.e.n>1)by increasing the value of Ha as compared to that in shear thinning fluids(i.e.n<1).Therefore,enhancement in heat transfer rate is comparably more in shear thickening fluid.Furthermore,comparable limiting case study with published result is also carried out in this research paper.