This paper summarizes the new results on the petrogenesis of Mesozoic granitoids and volcanic rocks in South China. The authors propose that these rocks were formed in time and space as a response to regional tectonic...This paper summarizes the new results on the petrogenesis of Mesozoic granitoids and volcanic rocks in South China. The authors propose that these rocks were formed in time and space as a response to regional tectonic regime change from the continent-continent collision of the Indosinian orogeny within the broad Tethyan orogenic domain in the Early Mesozoic (T1-T3) (Period Ⅰ) to the largely extensional setting as a result of the Yanshanian orogeny genetically associated with the NW-WNW-ward subduction of the paleo-Pacific oceanic lithosphere in the Late Mesozoic (J2-K2) (Period Ⅱ). Of the Period I Indosinian granitoids, the early (T1-T2^1) ones are syn-collisional, and formed in a compressional setting; the late (T2^2-T3) ones are latecollisional, and formed in a locally extensional environment. During the Period Ⅱ Yanshanian magmatism, the Early Yanshanian (J2-J3) granitoid-volcanic rocks, which are distributed mainly in the Nanling Range and in the interior of the South China tectonic block (SCB), are characteristic of rift-type intraplate magmatism, whereas the Late Yanshanian K1 granitoidovolcanic rocks are interpreted as genetically representing active continental margin magmatism. The K2 tholeiitic basalts interlayered with red beds are interpreted as genetically associated with the development of back-arc extensional basins in the interior of the SCB. The Yanshanian granitoid-volcanic rocks are distributed widely in South China, reflecting extensional tectonics within much of the SCB. The extension-induced deep crustal melting and underplating of mantle-derived basaltic melts are suggested as the two principal driving mechanisms for the Yanshanian granitic magmatism in South China.展开更多
Integrated zircon U-Pb dating and whole rock geochemical analyses have been carried out for two typical S-and I-type granitoids in the north Qinling. Zircon dating by SIMS of the Piaochi S-type grani- toids yields an ...Integrated zircon U-Pb dating and whole rock geochemical analyses have been carried out for two typical S-and I-type granitoids in the north Qinling. Zircon dating by SIMS of the Piaochi S-type grani- toids yields an emplacement age of 495±6 Ma. The granitoids show whole-rock εNd(t)=-8.2--8.8, zircon εHf(t)=-6―-39. The Huichizi I-type granitoids have emplacement ages of 421±27 Ma and 434±7 Ma es- tablished by LA-ICP-MS and SIMS methods, respectively. Their whole-rock εNd(t)=-0.9-0.9 and zircon εHf(t)=-11-8.4. Combined with statistical analyses of 28 zircon ages of granitoid plutons collected from the literature, Paleozoic magmatism in the north Qinling can be divided into three stages. The first-stage magmatism (~505-470 Ma) mainly occurred in the east part of the north Qinling and has features of an I-type arc, associated with which are S-type granitoids such as Piaochi pluton. The early granitoids (~505-490 Ma) have close spatio-temporal relations to ultra-high-pressure (UHP) rocks, and thus are interpreted as an oceanic subduction system along a continental margin. The second-stage magmatism (~450-422 Ma) occured through the whole north Qinling, and is characterized by I-type granitoids represented by the Huichizi pluton. The magma is interpreted as partial melting of lower crust mixed by mantle-derived magma in a collisional setting with the uplift of terranes. The third-stage magmatism (~415-400 Ma) is dominated by I-type granitoids and only took place in the middle part of the north Qinling, and is regarded as a late-stage collision. The spatial and temporal variations of the Qinling Paleozoic magmatism reveal protracted subduction/collision. The subduction was initiated from the east part of the north Qinling, earlier than that in the Qilian-northern Qaidam, Kunlun, and northern Dabie regions. This demonstrates variations in time of subduction, accretion and collision of separate blocks or terranes in the orogenic systems in central China.展开更多
The Nyainqêntanglha Group is traditionally viewed as the oldest metamorphic basement in the Lhasa block, but its formation age and tectonic setting remain debate. Zircons extracted from the metamorphic sequence o...The Nyainqêntanglha Group is traditionally viewed as the oldest metamorphic basement in the Lhasa block, but its formation age and tectonic setting remain debate. Zircons extracted from the metamorphic sequence of volcanics and intrusions of the Nyainqêntanglha Group, 10 km west of Nam Co in northern Lhasa block, have been investigated by cathodolu- minescence (CL), backscattered (BSE) and dated by ion microprobe (SHRIMP). We conclude that the U-Pb age of 787±9 Ma of zircons from the trondhjemite imposes a constraint on maxi- mum protolith age, and minimum formation age of the Nyainqêntanglha Group is constrained by U-Pb age of 748±8 Ma of zircons from the granite. The formation age of the Nyainqêntanglha Group is consistent with sedimentary age of Greater Himalayan rocks, showing that they devel- oped coevally in an arc-basin tectonic setting of Neoproterozoic active continental margin along the northern margin of the India shield. The inherited zircons from the tholetiite and granite give older 207Pb/206Pb ages from 947 to 1766 Ma. The positive εNd( t ) value indicates that the mafic rocks were derived from the depleted mantle, but contaminated by the older continental crustal material. Integrated Nd model age and U-Pb age data provide excellent evidence for the exis- tence of Mesoproterozoic basement in the Lhasa block during Neoproterozoic time.展开更多
Based on geological, chronological, geochemical and Nd isotopic studies of the high-grade basement of the Qilian terrane, the authors have drawn the following main conclusions: (1) the high-grade basement of the Qilia...Based on geological, chronological, geochemical and Nd isotopic studies of the high-grade basement of the Qilian terrane, the authors have drawn the following main conclusions: (1) the high-grade basement of the Qilian terrane consists mainly of meta-argillo-arenaceous rocks and granites and its bulk part was formed in the period of 0.8–1.0 Ga (the Jinningian period); (2) most of the meta-argillo-arenaceous rocks and granitic rocks have strong negative Eu and Ba anomalies (Eu/Eu*= 0.47–0.71 and Ba/Ba*=0.16–0.64), with fDM and ENd (1.0 Ga) ranging from 1.87 to 2.26 Ga and from ?8.54 to ?4.06 respectively, showing relatively high maturity; and (3) the Jinningian granitic rocks are a typical product of continent-continent collision, being probably related to the formation of the supercontinent Rodinia. These studies, combined with the study of high-grade basement rocks near the Qilian terrane, suggest that before the Jinningian period, the Qilian-Qaidam northern-margin terrane and Dunhuang-Alxa terrane were separated from each other, belonging to different plate systems of the North China craton and Yangtze platform respectively. The Qilian orogenic belt was the same as or similar to the Qiling orogenic belt in terms of the geological evolution history at least before the Jinningian period.展开更多
文摘This paper summarizes the new results on the petrogenesis of Mesozoic granitoids and volcanic rocks in South China. The authors propose that these rocks were formed in time and space as a response to regional tectonic regime change from the continent-continent collision of the Indosinian orogeny within the broad Tethyan orogenic domain in the Early Mesozoic (T1-T3) (Period Ⅰ) to the largely extensional setting as a result of the Yanshanian orogeny genetically associated with the NW-WNW-ward subduction of the paleo-Pacific oceanic lithosphere in the Late Mesozoic (J2-K2) (Period Ⅱ). Of the Period I Indosinian granitoids, the early (T1-T2^1) ones are syn-collisional, and formed in a compressional setting; the late (T2^2-T3) ones are latecollisional, and formed in a locally extensional environment. During the Period Ⅱ Yanshanian magmatism, the Early Yanshanian (J2-J3) granitoid-volcanic rocks, which are distributed mainly in the Nanling Range and in the interior of the South China tectonic block (SCB), are characteristic of rift-type intraplate magmatism, whereas the Late Yanshanian K1 granitoidovolcanic rocks are interpreted as genetically representing active continental margin magmatism. The K2 tholeiitic basalts interlayered with red beds are interpreted as genetically associated with the development of back-arc extensional basins in the interior of the SCB. The Yanshanian granitoid-volcanic rocks are distributed widely in South China, reflecting extensional tectonics within much of the SCB. The extension-induced deep crustal melting and underplating of mantle-derived basaltic melts are suggested as the two principal driving mechanisms for the Yanshanian granitic magmatism in South China.
基金Supported by National Basic Research Program of China (Grant No. 2009CB825006)National Natural Science Foundation of China (Grant No. 40872054)+2 种基金China Geological Survey (Grant No. 1212010611803)Scientific and Technology Program of Henan Province (Grant No. 26417)Foundation of the Key Laboratory of Northwest University, Xi’an, China
文摘Integrated zircon U-Pb dating and whole rock geochemical analyses have been carried out for two typical S-and I-type granitoids in the north Qinling. Zircon dating by SIMS of the Piaochi S-type grani- toids yields an emplacement age of 495±6 Ma. The granitoids show whole-rock εNd(t)=-8.2--8.8, zircon εHf(t)=-6―-39. The Huichizi I-type granitoids have emplacement ages of 421±27 Ma and 434±7 Ma es- tablished by LA-ICP-MS and SIMS methods, respectively. Their whole-rock εNd(t)=-0.9-0.9 and zircon εHf(t)=-11-8.4. Combined with statistical analyses of 28 zircon ages of granitoid plutons collected from the literature, Paleozoic magmatism in the north Qinling can be divided into three stages. The first-stage magmatism (~505-470 Ma) mainly occurred in the east part of the north Qinling and has features of an I-type arc, associated with which are S-type granitoids such as Piaochi pluton. The early granitoids (~505-490 Ma) have close spatio-temporal relations to ultra-high-pressure (UHP) rocks, and thus are interpreted as an oceanic subduction system along a continental margin. The second-stage magmatism (~450-422 Ma) occured through the whole north Qinling, and is characterized by I-type granitoids represented by the Huichizi pluton. The magma is interpreted as partial melting of lower crust mixed by mantle-derived magma in a collisional setting with the uplift of terranes. The third-stage magmatism (~415-400 Ma) is dominated by I-type granitoids and only took place in the middle part of the north Qinling, and is regarded as a late-stage collision. The spatial and temporal variations of the Qinling Paleozoic magmatism reveal protracted subduction/collision. The subduction was initiated from the east part of the north Qinling, earlier than that in the Qilian-northern Qaidam, Kunlun, and northern Dabie regions. This demonstrates variations in time of subduction, accretion and collision of separate blocks or terranes in the orogenic systems in central China.
文摘The Nyainqêntanglha Group is traditionally viewed as the oldest metamorphic basement in the Lhasa block, but its formation age and tectonic setting remain debate. Zircons extracted from the metamorphic sequence of volcanics and intrusions of the Nyainqêntanglha Group, 10 km west of Nam Co in northern Lhasa block, have been investigated by cathodolu- minescence (CL), backscattered (BSE) and dated by ion microprobe (SHRIMP). We conclude that the U-Pb age of 787±9 Ma of zircons from the trondhjemite imposes a constraint on maxi- mum protolith age, and minimum formation age of the Nyainqêntanglha Group is constrained by U-Pb age of 748±8 Ma of zircons from the granite. The formation age of the Nyainqêntanglha Group is consistent with sedimentary age of Greater Himalayan rocks, showing that they devel- oped coevally in an arc-basin tectonic setting of Neoproterozoic active continental margin along the northern margin of the India shield. The inherited zircons from the tholetiite and granite give older 207Pb/206Pb ages from 947 to 1766 Ma. The positive εNd( t ) value indicates that the mafic rocks were derived from the depleted mantle, but contaminated by the older continental crustal material. Integrated Nd model age and U-Pb age data provide excellent evidence for the exis- tence of Mesoproterozoic basement in the Lhasa block during Neoproterozoic time.
基金supported by China National Natural Science Foundation Grant 49732070.
文摘Based on geological, chronological, geochemical and Nd isotopic studies of the high-grade basement of the Qilian terrane, the authors have drawn the following main conclusions: (1) the high-grade basement of the Qilian terrane consists mainly of meta-argillo-arenaceous rocks and granites and its bulk part was formed in the period of 0.8–1.0 Ga (the Jinningian period); (2) most of the meta-argillo-arenaceous rocks and granitic rocks have strong negative Eu and Ba anomalies (Eu/Eu*= 0.47–0.71 and Ba/Ba*=0.16–0.64), with fDM and ENd (1.0 Ga) ranging from 1.87 to 2.26 Ga and from ?8.54 to ?4.06 respectively, showing relatively high maturity; and (3) the Jinningian granitic rocks are a typical product of continent-continent collision, being probably related to the formation of the supercontinent Rodinia. These studies, combined with the study of high-grade basement rocks near the Qilian terrane, suggest that before the Jinningian period, the Qilian-Qaidam northern-margin terrane and Dunhuang-Alxa terrane were separated from each other, belonging to different plate systems of the North China craton and Yangtze platform respectively. The Qilian orogenic belt was the same as or similar to the Qiling orogenic belt in terms of the geological evolution history at least before the Jinningian period.