期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于GA优化SVM的滚动轴承故障诊断方法研究 被引量:11
1
作者 胡勤 朱鸿斌 +1 位作者 赵凯凯 覃爱淞 《广东石油化工学院学报》 2020年第1期44-47,53,共5页
在滚动轴承故障诊断研究中,常采用时域、频域或者时频域分析方法对振动监测数据进行故障诊断。时域中的无量纲指标因对故障敏感,而被广泛运用于机械故障诊断中,但目前无量纲指标在诊断过程中存在严重重叠问题,造成诊断准确率低。为了解... 在滚动轴承故障诊断研究中,常采用时域、频域或者时频域分析方法对振动监测数据进行故障诊断。时域中的无量纲指标因对故障敏感,而被广泛运用于机械故障诊断中,但目前无量纲指标在诊断过程中存在严重重叠问题,造成诊断准确率低。为了解决这个问题,研究了基于互无量纲指标和支持向量机(SVM)结合的滚动轴承故障诊断方法。针对SVM对参数依赖性强,且在参数选择上没有系统理论而导致欠学习或过学习的问题,提出了一种基于遗传算法优化支持向量机(GA-SVM)的滚动轴承故障诊断方法。利用遗传算法进化搜索原理,以预测的准确率作为适应值,对SVM参数进行寻优,从而得到较优的支持向量机分类模型。实验表明,基于互无量纲指标和GA-SVM算法的故障诊断方法能够准确地识别旋转机械滚动轴承的状态。 展开更多
关键词 互无量纲指标 支持向量机 遗传算法 参数优化 故障诊断
下载PDF
基于GWO-SVM的石化旋转机械轴承故障诊断 被引量:1
2
作者 莫常春 刘美 +4 位作者 费继友 张清华 张斐 吴斌鑫 周正南 《广东石油化工学院学报》 2022年第3期41-45,共5页
针对传统的无量纲指标在不同故障之间存在数据重叠,导致故障诊断准确率低的问题,提出了一种基于互无量纲指标和灰狼算法优化支持向量机(GWO-SVM)的故障识别模型。利用灰狼算法强大的全局搜索能力,对支持向量机关键参数惩罚因子和核函数... 针对传统的无量纲指标在不同故障之间存在数据重叠,导致故障诊断准确率低的问题,提出了一种基于互无量纲指标和灰狼算法优化支持向量机(GWO-SVM)的故障识别模型。利用灰狼算法强大的全局搜索能力,对支持向量机关键参数惩罚因子和核函数参数进行寻优,并采用广东省石化装备故障诊断重点实验室多级离心风机轴承数据进行验证。实验证明:GWO-SVM能精确地对轴承故障类型进行分类,同时GWO-SVM相对于单纯的SVM模型和遗传算法优化SVM模型具有更短的算法运行时间和更高准确率,平均准确率高达90%。 展开更多
关键词 互无量纲指标 灰狼算法 支持向量机 参数优化 故障诊断
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部