Vascular smooth muscle cell (VSMC) differentiation and proliferation are two important physiological proc- esses during vascular development. The phenotypic alteration from differentiated to proliferative VSMC contr...Vascular smooth muscle cell (VSMC) differentiation and proliferation are two important physiological proc- esses during vascular development. The phenotypic alteration from differentiated to proliferative VSMC contrib- utes to the development of several major cardiovascular diseases including atherosclerosis, hypertension, resteno- sis after angioplasty or bypass, diabetic vascular complications, and transplantation arteriopathy. Since the VSMC phenotype in these pathological conditions resembles that of developing VSMC during embryonic development, understanding of the molecular mechanisms that control VSMC differentiation will provide fundamental insights into the pathological processes of these cardiovascular diseases. Although VSMC differentiation is usually ac- companied by an irreversible cell cycle exit, VSMC proliferation and differentiation occur concurrently during embryonic development. The molecular mechanisms simultaneously regulating these two processes, however, remain largely unknown. Our recent study demonstrates that cell division cycle 7, a key regulator of cell cycle, promotes both VSMC differentiation and proliferation through different mechanisms during the initial phase of VSMC differentiation. Conversely, Kriappel-like factor 4 appears to be a repressor for both VSMC differentia- tion and proliferation. This review attempts to highlight the novel role of cell division cycle 7 in TGF-β-induced VSMC differentiation and proliferation. The role of K141ppel-like factor 4 in suppressing these two processes will also be discussed.展开更多
The increased proliferation and migration of vascular smooth muscle cells (VSMCs) are key events in the development of atherosclerotic lesions. Baicalin, an herb-derived flavonoid compound, has been previously shown...The increased proliferation and migration of vascular smooth muscle cells (VSMCs) are key events in the development of atherosclerotic lesions. Baicalin, an herb-derived flavonoid compound, has been previously shown to induce apoptosis and growth inhibition in cancer cells through multiple pathways. However, the potential role of baicalin in regulation of VSMC proliferation and prevention of cardiovascular diseases remains unexplored. In this study, we show that pretreatment with baicalin has a dose-dependent inhibitory effect on PDGF-BB-stimulated VSMC pro- liferation, accompanied with the reduction of proliferating cell nuclear antigen (PCNA) expression. We also show that baicalin-induced growth inhibition is associated with a decrease in cyclin E-CDK2 activation and increase in p27 level in PDGF-stimulated VSMCs, which appears to be at least partly mediated by blockade of PDGF recep- tor [~ (PDGFR~)-extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. In addition, baicalin was also found to inhibit adhesion molecule expression and cell migration induced by PDGF-BB in VSMCs. Furthermore, using an animal carotid arterial balloon-injury model, we found that baicalin significantly inhibited neointimal hyperplasia. Taken together, our results reveal a novel function of baicalin in inducing growth arrest of PDGF-stimulated VSMCs and suppressing neointimal hyperplasia after balloon injury, and suggest that the underlying mechanism involves the inhibition of cyclin E-CDK2 activation and the increase in p27 accumulation via blockade of the PDGFR^-ERK1/2 signaling cascade.展开更多
To investigate whether the expression of exogenous heme oxygenase-1 (HO-1) gene within vascular smooth muscle cells (VSMC) could protect the cells from free radical attack and inhibit cell proliferation, we establishe...To investigate whether the expression of exogenous heme oxygenase-1 (HO-1) gene within vascular smooth muscle cells (VSMC) could protect the cells from free radical attack and inhibit cell proliferation, we established an in vitro transfection of human HO-1 gene into rat VSMC mediated by a retroviral vector. The results showed that the profound expression of HO-1 protein as well as HO activity was 1.8- and 2.0-fold increased respectively in the transfected cells compared to the non-transfected ones. The treatment of VSMC with different concentrations of H2O2 led to the remarkable cell damage as indicated by survival rate and LDH leakage. However, the resistance of the HO-1 transfected VSMC against H2O2 was significantly raised. This protective effect was dramatically diminished when the transfected VSMC were pretreated with ZnPP-IX, a specific inhibitor of HO, for 24 h. In addition, we found that the growth potential of the transfected cells was significantly inhibited directly by increased activity of HO-1, and this effect might be related to decreased phosphorylation of MAPK. These results suggest that the overexpression of introduced hHO-1 is potentially able to reduce the risk factors of atherosclerosis, partially due to its cellular protection against oxidative injury and to its inhibitory effect on cellular proliferation.展开更多
Background Increased proliferation of pulmonary vascular cells and muscularisation of pulmonary vessels are frequently observed in human smokers and in animals exposed to cigarette smoke. To elucidate the molecular me...Background Increased proliferation of pulmonary vascular cells and muscularisation of pulmonary vessels are frequently observed in human smokers and in animals exposed to cigarette smoke. To elucidate the molecular mechanisms leading to these changes, we studied the in vitro effect of cigarette smoke extract (CSE) on proliferation of pulmonary artery smooth muscle cells (PASMCs) and activation of protein kinase C (PKC), an important kinase implicated in cell proliferation. Methods PASMCs cultured from 12 normal Wistar rats were studied in the following conditions: (1) PASMCs were exposed to different concentrations of CSE for 24 hours, then MTT colorimetric assay was used for detection of cell proliferation. Cell viability was assessed by trypan blue exclusion. (2) PASMCs were pre-incubated with phorbol 12-myristate 13-acetate (PMA) for 24 hours or Ro31-8220 for 30 minutes before exposure to 5% CSE for 24 hours. Cell proliferation was examined by MTT colorimetric assay, cell cycle analysis and proliferating cell nuclear antigen (PCNA) immunocytochemical staining. (3) PASMCs were exposed to 5% CSE for 24 hours. Then PKC-a mRNA expression was detected by reverse transcription-polymerase chain reaction (RT- PCR) and protein expression by Western blotting, while PKC-α translocation was observed by immunofluorescence staining and confocal microscopy. (4) PASMCs were transfected with specific antisense oligodeoxynucleotides against PKC-a 6 hours before exposure to 5% CSE for 24 hours. PKC-α protein expression and cell proliferation were detected by methods described previously. Results (1) Low concentration of CSE (5%) increased proliferation of PASMCs, whereas high concentrations (20%, 30%) were inhibitory as a result of cytotoxicity. (2) The value of absorbance (Value A), proliferation index (PI), S-phase cell fraction (SPF) and average optical density of PCNA staining in PASMCs from 5% CSE exposure group (0.306 ± 0.033, 0.339 ± 0.033, 0.175 展开更多
基金supported by grants from National Institutes of Health (HL093429 and HL107526 to S.-Y.C.)
文摘Vascular smooth muscle cell (VSMC) differentiation and proliferation are two important physiological proc- esses during vascular development. The phenotypic alteration from differentiated to proliferative VSMC contrib- utes to the development of several major cardiovascular diseases including atherosclerosis, hypertension, resteno- sis after angioplasty or bypass, diabetic vascular complications, and transplantation arteriopathy. Since the VSMC phenotype in these pathological conditions resembles that of developing VSMC during embryonic development, understanding of the molecular mechanisms that control VSMC differentiation will provide fundamental insights into the pathological processes of these cardiovascular diseases. Although VSMC differentiation is usually ac- companied by an irreversible cell cycle exit, VSMC proliferation and differentiation occur concurrently during embryonic development. The molecular mechanisms simultaneously regulating these two processes, however, remain largely unknown. Our recent study demonstrates that cell division cycle 7, a key regulator of cell cycle, promotes both VSMC differentiation and proliferation through different mechanisms during the initial phase of VSMC differentiation. Conversely, Kriappel-like factor 4 appears to be a repressor for both VSMC differentia- tion and proliferation. This review attempts to highlight the novel role of cell division cycle 7 in TGF-β-induced VSMC differentiation and proliferation. The role of K141ppel-like factor 4 in suppressing these two processes will also be discussed.
基金We are grateful to Dr Guan KL (Moore's Cancer Center, La Jolla, CA, USA) for the gift of pCMV-MEKca. This study was supported by the National Natural Science Foundation of China (30770787 and 90919035), the National Basic Research Program of China (2005CB523301), and the International Cooperation in Science and Technology Projects (2006DFB32460) and the Hebei Province Natural Science Foundation (C2007000831).
文摘The increased proliferation and migration of vascular smooth muscle cells (VSMCs) are key events in the development of atherosclerotic lesions. Baicalin, an herb-derived flavonoid compound, has been previously shown to induce apoptosis and growth inhibition in cancer cells through multiple pathways. However, the potential role of baicalin in regulation of VSMC proliferation and prevention of cardiovascular diseases remains unexplored. In this study, we show that pretreatment with baicalin has a dose-dependent inhibitory effect on PDGF-BB-stimulated VSMC pro- liferation, accompanied with the reduction of proliferating cell nuclear antigen (PCNA) expression. We also show that baicalin-induced growth inhibition is associated with a decrease in cyclin E-CDK2 activation and increase in p27 level in PDGF-stimulated VSMCs, which appears to be at least partly mediated by blockade of PDGF recep- tor [~ (PDGFR~)-extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. In addition, baicalin was also found to inhibit adhesion molecule expression and cell migration induced by PDGF-BB in VSMCs. Furthermore, using an animal carotid arterial balloon-injury model, we found that baicalin significantly inhibited neointimal hyperplasia. Taken together, our results reveal a novel function of baicalin in inducing growth arrest of PDGF-stimulated VSMCs and suppressing neointimal hyperplasia after balloon injury, and suggest that the underlying mechanism involves the inhibition of cyclin E-CDK2 activation and the increase in p27 accumulation via blockade of the PDGFR^-ERK1/2 signaling cascade.
基金This work was kindly supported by Na-tional Natural Science Foundation of China(No.39670308)
文摘To investigate whether the expression of exogenous heme oxygenase-1 (HO-1) gene within vascular smooth muscle cells (VSMC) could protect the cells from free radical attack and inhibit cell proliferation, we established an in vitro transfection of human HO-1 gene into rat VSMC mediated by a retroviral vector. The results showed that the profound expression of HO-1 protein as well as HO activity was 1.8- and 2.0-fold increased respectively in the transfected cells compared to the non-transfected ones. The treatment of VSMC with different concentrations of H2O2 led to the remarkable cell damage as indicated by survival rate and LDH leakage. However, the resistance of the HO-1 transfected VSMC against H2O2 was significantly raised. This protective effect was dramatically diminished when the transfected VSMC were pretreated with ZnPP-IX, a specific inhibitor of HO, for 24 h. In addition, we found that the growth potential of the transfected cells was significantly inhibited directly by increased activity of HO-1, and this effect might be related to decreased phosphorylation of MAPK. These results suggest that the overexpression of introduced hHO-1 is potentially able to reduce the risk factors of atherosclerosis, partially due to its cellular protection against oxidative injury and to its inhibitory effect on cellular proliferation.
基金a grant of National Nature Science Foundation of China (No. 30470759).
文摘Background Increased proliferation of pulmonary vascular cells and muscularisation of pulmonary vessels are frequently observed in human smokers and in animals exposed to cigarette smoke. To elucidate the molecular mechanisms leading to these changes, we studied the in vitro effect of cigarette smoke extract (CSE) on proliferation of pulmonary artery smooth muscle cells (PASMCs) and activation of protein kinase C (PKC), an important kinase implicated in cell proliferation. Methods PASMCs cultured from 12 normal Wistar rats were studied in the following conditions: (1) PASMCs were exposed to different concentrations of CSE for 24 hours, then MTT colorimetric assay was used for detection of cell proliferation. Cell viability was assessed by trypan blue exclusion. (2) PASMCs were pre-incubated with phorbol 12-myristate 13-acetate (PMA) for 24 hours or Ro31-8220 for 30 minutes before exposure to 5% CSE for 24 hours. Cell proliferation was examined by MTT colorimetric assay, cell cycle analysis and proliferating cell nuclear antigen (PCNA) immunocytochemical staining. (3) PASMCs were exposed to 5% CSE for 24 hours. Then PKC-a mRNA expression was detected by reverse transcription-polymerase chain reaction (RT- PCR) and protein expression by Western blotting, while PKC-α translocation was observed by immunofluorescence staining and confocal microscopy. (4) PASMCs were transfected with specific antisense oligodeoxynucleotides against PKC-a 6 hours before exposure to 5% CSE for 24 hours. PKC-α protein expression and cell proliferation were detected by methods described previously. Results (1) Low concentration of CSE (5%) increased proliferation of PASMCs, whereas high concentrations (20%, 30%) were inhibitory as a result of cytotoxicity. (2) The value of absorbance (Value A), proliferation index (PI), S-phase cell fraction (SPF) and average optical density of PCNA staining in PASMCs from 5% CSE exposure group (0.306 ± 0.033, 0.339 ± 0.033, 0.175