With the lack of space for new landfills,muni-cipal solid waste(MSW)incineration is playing an increasingly important role in municipal solid waste man-agement in China.The literatures on certain aspects of incinerati...With the lack of space for new landfills,muni-cipal solid waste(MSW)incineration is playing an increasingly important role in municipal solid waste man-agement in China.The literatures on certain aspects of incineration plants in China are reviewed in this paper,including the development and status of the application of MSW incineration technologies,the treatment of leachate from stored MSW,air pollution control technologies,and the status of the fly-ash control method.Energy policy and its promotion of MSW-to-energy conversion are also elucidated.展开更多
Based on first-order kinetics of hydrolysis process, biodegradation of municipal solid waste (MSW) is assumed to obey a first-order decay equation which can take the direct effect of water content on biodegradation ...Based on first-order kinetics of hydrolysis process, biodegradation of municipal solid waste (MSW) is assumed to obey a first-order decay equation which can take the direct effect of water content on biodegradation into account. Hydraulic model is an unsaturated-saturated flow model using mass conservation equations for fluids. Mechanical compression of MSW is ex- pressed by a stress-age coupled compression model. Through above models, a one-dimensional (I-D) bio-hydro-mechanical coupled model is established to analyze solid-liquid-gas interactions in landfilled MSW. Values of all the model parameters for current typical Chinese MSW are determined. Numerical analysis of a hypothetical waste sample in a closed system shows that gas pressure and gas concentration is extremely large which might cause severe gas explosion problem. Total gas production is about 267.0 m3 per wet ton of fresh wastes. For another hypothetical landfilled MSW layer, the coupled model predicts a dis- sipation of gas pressure during passive gas collection process. Annual gas production is large at the beginning of biodegradation, and then decreases with time. Surface settlement of the wastes increases quickly initially and then becomes stable with a compression strain of about 0.32 after 20 years.展开更多
Incineration is widely adopted in municipal solid waste management,which produces large amounts of municipal solid waste incineration(MSWI)fly ash.The harmless treatment of MSWI fly ash requires the appropriate dispos...Incineration is widely adopted in municipal solid waste management,which produces large amounts of municipal solid waste incineration(MSWI)fly ash.The harmless treatment of MSWI fly ash requires the appropriate disposal of heavy metals and dioxins that are enriched in fly ash.This review summarizes recently developed harmless disposal methods for MSWI fly ash including solidification/stabilization,thermal treatment,and separation/extraction.In addition,we discuss heavy metal and dioxin fixation,and the removal capacity of fly ash via solidification/stabilization(including cement solidification,chemical stabilization,hydrothermal processes,and mechano-chemical methods),thermal treatment(including sintering,fuel-burning,or electric melting/vitrification),and separation/extraction(including water-washing,chemical reagent leaching,biological leaching,electrodialysis separation,chemical reagent extraction,and nanomaterials extraction).The advantages and disadvantages of different harmless treatment methods are compared and future research prospects and suggestions are summarized.This review provides general guidelines for the harmless treatment of MSWI fly ash in the future.展开更多
Municipal Solid Waste(MSW)management in China has been transitioning from a mixed collection and treatment system to a separated collection and treatment system.The continuous rise of MSW treatment capacity and the op...Municipal Solid Waste(MSW)management in China has been transitioning from a mixed collection and treatment system to a separated collection and treatment system.The continuous rise of MSW treatment capacity and the optimization of technology structure provided basic facility support for China to promote MSW separation at source.China preferred a four-type separation system.Regulated recycling should be enhanced to improve the efficiency and sustainability of recycling industry.As food waste is the main composition of MSW in China,20%-30%of the food waste diversion and land application could maximize the comprehensive environmental performance.Incineration is to be the pillar technology in MSW separated treatment system in China.展开更多
The effect of sulfur compounds (including sulfur, sulfide, sulfite and sulfate), initial concentration of heavy metal and operating conditions on Cd emission in municipal solid waste (MSW) incineration were invest...The effect of sulfur compounds (including sulfur, sulfide, sulfite and sulfate), initial concentration of heavy metal and operating conditions on Cd emission in municipal solid waste (MSW) incineration were investi-gated using a simulated tubular furnace and simulated MSW spiked with Cd. The concentration of Cd was meas-ured by inductively coupled plasma-atomic emission spectrometry (ICP-AES) after digesting the samples including bottom ash, fly ash and flue gas according to related USEPA methods. The results show that S and Na2S tend to in- crease Cd partitioning in bottom ash, whereas Na2SO3 and Na2SO4 tend to reduce Cd partitioning in bottom ash. The effect of sulfur compounds on Cd partitioning in bottom ash was in the sequence of Na2S〉S〉Na2SO3〉 Na2SO4. chemical equilibrium analysis is also performed to determine the effect of sorbents on Cd adsorption. The calculations show that S presents strong affinity for Cd and restrains Cd adsorption by SiO2, whereas when temperature rises to between 830℃ and 1030℃, Cd adsorption efficiency of SiO2 is over 80% and the efficiency of Al2O3 is up to 85%.展开更多
The addition of municipal solid wastes (MSW) is considered as a possible strategy for soil rehabilitation in southeast Spain. The objective of this study was to evaluate the long-term (17 years) effect of five dos...The addition of municipal solid wastes (MSW) is considered as a possible strategy for soil rehabilitation in southeast Spain. The objective of this study was to evaluate the long-term (17 years) effect of five doses of MSW addition on the microbiological, biochemical, and physical properties of semiarid soil. Increased values of several parameters that serve as indicators of general microbiological activity, such as, basal respiration, adenosine triphosphate (ATP) or dehydrogenase activity; microbial population size (microbial biomass C), and extracellular hydrolase activity related to macronutrient cycles, such as, urease, 3-glucosidase, and N-a-benzoyl-L-argininamide protease, were observed in the amended soils. The highest MSW doses showed the highest values in these hydrolase activities. The incorporation of municipal waste resulted in a more dense development of the plant cover, 50% greater in higher doses than in the control treatment, which generated a substantial increase in several C fractions. Total organic carbon reached 12 g kg^-1 soil with the highest MSW doses, compared to 4.30 g kg^-1 soil in the control treatment. The physical properties of the soil were also improved, showing greater percentage of stable aggregates and water holding capacity. Positive correlation coefficients between C fractions and parameters related to microbial activity and aggregate stability were observed. Although these improvements were greater in the soils receiving the highest doses of organic amendment, the increases were not proportional to the amount added, demonstrating the existence of a threshold, above which an increase in the amount of organic matter added is not reflected in an increase in the soil's physical, biochemical, and microbiological properties. However, the addition of municipal solid wastes proved its suitability for improving soil quality, thereby indicating the potential of such an amendment, to prevent desertification in Mediterranean areas such as those studied.展开更多
Proper solid waste disposal is an important socioeconomic concern for all developing countries.Municipalities have their own policies,individual approaches and methods to manage the solid wastes.They consider wastelan...Proper solid waste disposal is an important socioeconomic concern for all developing countries.Municipalities have their own policies,individual approaches and methods to manage the solid wastes.They consider wastelands outside the urban area as the best suitable for the solid waste disposal.Such improper site selection will create morphological changes that lead to environmental hazards in the urban and its surrounding areas.In this research,the site selection for urban solid waste disposal in the Coimbatore district used geographical information system(GIS)and multi-criteria decision analysis(MCDA).Thematic layers of lineament density,landuse/landcover,population density,groundwater depth,drainage density,slope,soil texture,geology and geomorphology were considered as primary criteria and weights for criteria,and sub-criteria were assigned by MCDA analysis.The resultant weight score was validated by consistency ratio so that the efficiency of the selected criteria was justified.The overlay analysis in GIS environment provides 17 potential zones in Coimbatore district,among which,four suitable sites were screened and refined with the help of field investigation and visual interpretation of satellite image.The result of landfill suitability map shows the effectiveness of the proposed method.展开更多
A simulated landfill anaerobic bioreactor was used to characterize the anaerobic biodegradation and biogas generation of organic waste which was mainly composed of residuals of vegetables and foods. We investigated th...A simulated landfill anaerobic bioreactor was used to characterize the anaerobic biodegradation and biogas generation of organic waste which was mainly composed of residuals of vegetables and foods. We investigated the dynamics of the coenzyme F420 activity and determined correlations between biogas yields, methane yields, methane concentration and coenzyme F420 activity. The experiment was carded out under different conditions from control without any treatment, addition of Fe^3+, microorganism inoculation to a combination of Fe3+ addition and inoculation at a temperature of 36±2℃. The experiment was lasted 120 d and coenzyme F420 activity was analyzed using ultraviolet spectrophotornetry. Experimental results indicated that activity of the coenzyme F420 treated by Fe and microorganism inoculation increased substantially. The waste treated by inoculation had the greatest increase. When the waste was treated by Fe^3+, inoculation and the combination of Fe^3+ and inoculation, biogas yields increased by 46.9%, 132.6% and 153.1%, respectively; while the methane yields increased 4, 97 and 98 times. Methane concentration varied between 0 and 6% in the control reactor, from 0 to 14% for waste treated by the addition of Fe^3+, from 0 to 59% for waste treated by inoculation and from 0 to 63% for waste treated by Fe^3+ addition and inoculation. Correlations between coenzyme F420 activity and biogas production, methane production and methane concentration proved to be positively significant (p〈0.05), except for the control. Consequently, coenzyme F420 activity could be used as an index for monitoring the activity of methanogens during anaerobic biodegradation of the organic fraction of municipal solid waste.展开更多
Researches on the hydrothermal treatment of municipal solid waste incineration(MSWI)fly ash were conducted to eliminate dioxins and stabilize heavy metals.In order to enhance decomposing polychlorinated dibenzodioxins...Researches on the hydrothermal treatment of municipal solid waste incineration(MSWI)fly ash were conducted to eliminate dioxins and stabilize heavy metals.In order to enhance decomposing polychlorinated dibenzodioxins(PCDDs)and polychlorinated dibenzo-furans(PCDFs)during hydrothermal process,a strong reductant carbohydrazide(CHZ)is introduced.A hydrothermal reactor was set up by mixing raw MSWI fly ash or the pre-treated fly ash with water and then heated to a pre-set temperature;CHZ was spiked into solution according to specially defined dosage.Experimental results showed that under the temperatures of 518 K and 533 K,the decomposition rates of PCDDs/PCDFs were over 80%and 90%,respectively,by total concentration.However,their toxic equivalent(TEQ)decreased only slightly or even increased due to the rising in concentration of congeners 2,3,7,8-TCDD/TCDF,which might be resulted from the highly chlorinated congeners losing their chlorine atoms and being degraded during the hydrothermal process.Better results of TEQ reduction were also obtained under the higher tested temperature of 533 K and reactor with addition of 0.1%wt CHZ was corresponded to the best results.Good stabilization of heavy metals was also obtained in the same hydrothermal process especially when ferrous sulphate was added as auxiliary agent.展开更多
Polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) emissions in flue gas from two types of municipal solid waste incinerators (MSWIs) most commonly used in China were investigated in this study. The selected i...Polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) emissions in flue gas from two types of municipal solid waste incinerators (MSWIs) most commonly used in China were investigated in this study. The selected incinerators include two grate-type MSWIs: MSWI-A (350 t/d) and MSWI-B 050 t/d), and two fluidized bed MSWIs: MSWI-C (400 t/d) and MSWI-D (400 t/d), which are all equipped with semi-dry lime scrubber and bag filter except MSWI-D equipped with cyclone and wet scrubber (WS) as air pollutant control device (APCD). Results indicated that the emission concentration and the international toxic equivalents (I-TEQs) of the PCDD/Fs from the stacks were in the range of 1.210-10.273 ng/Nm^3 and 0.019-0.201 ng I-TEQ/Nm^3, respectively. They were greatly lower than the emission regulation standard of PCDD/Fs in China (1.0 ng I-TEQ/Nm^3). However, only the PCDD/Fs emission level from MSWI-C was below 0.1 ng I-TEQ/Nm^3. Although the homologue profiles were distinct, the contributions of the 2,3,7,8-subsituted congeners to the total I-TEQ were similar among all the investigated MSWIs. Two major 2,3,7,8-substituted congeners, 2,3,4,7,8-PeCDF and 1,2,3,7,8-PeCDD, account for 47% and 9% (average values) of the total I-TEQ values, respectively. The correlation between PCDD/Fs levels and composition of flue gas was also discussed.展开更多
The effect of moisture in municipal solid waste (MSW) on partitioning of lead (Pb), zinc (Zn), copper (Cu) and cadmium (Cd) was studied in a laboratory tubular furnace by using simulated MSW. The moisture in MSW influ...The effect of moisture in municipal solid waste (MSW) on partitioning of lead (Pb), zinc (Zn), copper (Cu) and cadmium (Cd) was studied in a laboratory tubular furnace by using simulated MSW. The moisture in MSW influences heavy metals in following ways, to increase the moisture in flue gas and decrease the combustion temperature, to prolong the combustion time, and to prolong the releasing time of volatiles with the furnace temperature decreased by increasing the moisture. The volatilization of Pb, Zn and Cd was enhanced by increasing the moisture in MSW because of the prolonged combustion time. For Pb and Zn, the combustion time was important at higher temperature, while for Cd, it was important at low temperature. The moisture content showed slight effect on Cu partitioning. When extra chlorine was added to MSW, such as 1%PVC + 0.5%NaCl, the volatilization of Pb, Zn and Cu was enhanced by increasing the moisture because water evaporation reduced the temperature and increased devolatilization time. At higher temperature, NaCl tends to decompose and generates more free chlorine, producing more metal chlorides. Since Cd is a strong volatile heavy metal in MSW, the effect of moisture content on its volatilization is less than that of Pb, Zn or Cu during the MSW incineration.展开更多
The greenhouse effect of methane (CH4) is only inferior to that of carbon dioxide (CO2). As an important anthropogenic emission source, the calculation of the emission amount of CH4 from waste treatment in landfills p...The greenhouse effect of methane (CH4) is only inferior to that of carbon dioxide (CO2). As an important anthropogenic emission source, the calculation of the emission amount of CH4 from waste treatment in landfills plays an important role in compiling greenhouse gases inventory and in estimating the climate change effects caused by increasing of greenhouse gases. Based on the previous work, and according to the sampling and analysis on municipal solid waste (MSW) in typical cities, the degradable organic carbon (DOC) percentile was identified in typical cities in recent years. According to the IPCC greenhouse gases inventory guideline and default method of CH4 emission from MSW landfills, and in light of MSW managing situation in different regions, the amount of CH4 emission was calculated. The results show that the amount of CH4 emission decreases geographically from east to west and it increases temporally from 1994 to 2004 in China.展开更多
To analyze the feasibility of utilization of thermal technology in fly ash treatment, thermal properties and microstructures of municipal solid waste incineration (MSW1) fly ash were studied by measuring the chemica...To analyze the feasibility of utilization of thermal technology in fly ash treatment, thermal properties and microstructures of municipal solid waste incineration (MSW1) fly ash were studied by measuring the chemical element composition, specific surface area, pore sizes, functional groups, TEM image, mineralogy and DSC-TG curves of raw and sintered fly ash specimens. The results show that MSWI fly ash particles mostly have irregular shapes and non-typical pore structure, and the supersonic treatment improves the pore structure; MSWI fly ash consists of Such crystals as SiO2, CaSO4 and silica-aluminates, and some soluble salts like KCl and NaCl. During the sintering process, mineralogy changes largely and novel solid solutions are produced gradually with the rise of temperature. Therefore, the utilization of a proper thermal technology not only destructs those persistent organic toxicants but also stabilizes hazardous heavy metals in MSWI fly ash.展开更多
China has a large solid waste stockpile and a low resource utilisation rate,and the utilisation of solid waste resources is of great significance in promoting sustainable social development.In order to further promote...China has a large solid waste stockpile and a low resource utilisation rate,and the utilisation of solid waste resources is of great significance in promoting sustainable social development.In order to further promote the green and efficient development of China's road field,an overview of the current status of the application,research progress,hot frontiers,problems and their countermeasures based on the three aspects of industrial solid wastes,engineering solid wastes and municipal solid wastes in highway engineering was conducted,and the development prospect of the resourceful utilisation of solid waste in highway engineering was outlooked,with a view to promoting the development of China's green roads.Statistics on the stockpile,utilisation and comprehensive utilisation rate of industrial solid wastes in China are presented,and the optimal mixing amount,production process and application technology of industrial solid wastes for road base materials are systematically summarised.Based on the concept of high-value utilisation of solid waste,the mechanical properties,durability,construction technology and quality control standards of engineering solid waste applied in roadbed engineering are summarised,and the difficulties in the application of engineering solid waste in road engineering are summarised.Finally,the feasibility,mechanical properties and environmental characteristics of municipal solid waste domestic waste incinerator slag,waste tyres and plastics applied in road engineering are summarised.This review can provide references and lessons for the design and development of green roads,and promote the innovation and development of greening road engineering.展开更多
Mixed incineration of municipal solid waste (MSW) in existing coal gangue power plant is a potentially highefficiency and low-cost MSW disposal way. In this paper, the co-combustion and pollutants emission characteris...Mixed incineration of municipal solid waste (MSW) in existing coal gangue power plant is a potentially highefficiency and low-cost MSW disposal way. In this paper, the co-combustion and pollutants emission characteristic of MSW and coal gangue was investigated in a circulating fluidized bed (CFB) combustor. The effect of MSW blend ratio, bed temperature and excess air ratio was detailedly studied. The results show the NOX and HC1 emission increases with the increasing MSW blend ratio and the SO2 emission decreases. With the increase of bed temperature, the CO emission decreases while the NOX and SO2 emission increases. The HC1 emission is nearly stable in the temperature range of 850-950℃. The increase of excess air ratio gradually increases the NOX emission but has no significant effect on the SO2 emission. The HC1 emission firstly increases and then decreases with the increase of excess air ratio. For a typical CFB operating condition with excess air ratio of 1.4, bed temperature of 900℃ and MSW blend ratio of 10%, the original CO, NOX, SO2 and HC1 emissions are 52, 181, 3373 and 58 mg/Nm^3 respectively.展开更多
Population growth,waste generation,and massive waste mismanagement have led to environmental catastrophe.Management of municipal solid waste(MSW)requires an efficient and sustainable integrated system.The integrated t...Population growth,waste generation,and massive waste mismanagement have led to environmental catastrophe.Management of municipal solid waste(MSW)requires an efficient and sustainable integrated system.The integrated thermal processing of MSW is one of the best waste management techniques.In this study,energy analysis of MSW is carried out based on the material and energy balance of 2000 kg wet MSW,which contains 50%leachate.Once the leachate is removed,the dry MSW is sent for carbon content enhancement in carbonization to produce MSW-based char.Thereafter,the combustion of MSW-based char provided high heat and syngas to be used in a hydrothermal process for MSW leachate treatment.The result shows that the char fuel of MSW produces a sufficient amount of energy,13501.29 MJ(84.55%),in the form of synthetic gas by-product,which has a big potential as an energy source.The novelty of the proposed integrated thermal system is to produce 84.55%synthetic gas by-product,which is used for electricity production,cooking,food,and heat energy for industrial purposes.The proposed applications of this paper offer insightful information for policymaking regarding novel MSW techniques,which are economical,energy-efficient,and environmentally friendly.Thus,it increases the effectiveness of MSW utilization.展开更多
Organic solid and liquid wastes contain large amounts of energy, nutrients, and water, and should not be perceived as merely waste. Recycling, composting, and combustion of non-recyclables have been practiced for deca...Organic solid and liquid wastes contain large amounts of energy, nutrients, and water, and should not be perceived as merely waste. Recycling, composting, and combustion of non-recyclables have been practiced for decades to capture the energy and values from municipal solid wastes. Treatment and disposal have been the primary management strategy for wastewater. As new technologies are emerging, alternative options for the utilization of both solid wastes and wastewater have become available. Considering the complexity of the chemical, physical, and biological properties of these wastes, multiple technologies may be required to maximize the energy and value recovery from the wastes. For this purpose, biorefin- ing tends to be an appropriate approach to completely utilize the energy and value available in wastes. Research has demonstrated that non-recyclable waste materials and bio-solids can be converted into usable heat, electricity, fuel, and chemicals through a variety of processes, and the liquid waste streams have the potential to support crop and algae growth and provide other energy recovery and food production options. In this paper, we propose new biorefining schemes aimed at organic solid and liquid wastes from municipal sources, food and biological processing plants, and animal production facilities. Four new breakthrough technologies-namely, vacuum-assisted thermophilic anaerobic digestion, extended aquaponics, oily wastes to biodiesel via glycerolysis, and microwave-assisted thermochemical conversion-can be incorporated into the biorefining schemes, thereby enabling the complete utilization of those wastes for the production of chemicals, fertilizer, energy (biogas, syngas, biodiesel, and bio-oil), foods, and feeds, and resulting in clean water and a significant reduction in pollutant emissions.展开更多
Municipal solid waste(MSW)is accumulating over elapsed time across the world,and it is observed in many projects associated with weak soils,such as marl.Therefore,effective solutions to the environmental problem are e...Municipal solid waste(MSW)is accumulating over elapsed time across the world,and it is observed in many projects associated with weak soils,such as marl.Therefore,effective solutions to the environmental problem are essential.Conventional techniques for stabilizing marl generally use substances such as lime and cement,which could exacerbate pollution.For this,some new stabilizers,e.g.nano-MgO,are used.There are large quantities of marls and MSW in Shiraz City,Iran.The present study aims to evaluate the feasibility of using nano-MgO as a green low-carbon binder to remove MSW from the environment and make construction projects more cost-effective.Consolidated drained shear tests were conducted to evaluate the mechanical behaviors of the nano-MgO treated marl specimens at high normal stresses.The marl specimens containing MSW percentages of 15%,25%,35%,and 45%and nano-MgO percentages of 0.25%,0.5%,0.75%,and 1%,were used.It is found that the marl containing 15%and 25%MSW and 0.5%nano-MgO at 28-d curing can perform cation exchange and form new cementitious products.The soils with merely MSW show good performance due to the removal of the kaolinite and the formation of brucite.However,the soil with 25%MSW and 0.5%nano-MgO shows the same strength enhancement as the specimen with the optimal nano-MgO(0.75%)through the formation of dolomite,with a 20.59%increase in strain energy(SE).展开更多
文摘With the lack of space for new landfills,muni-cipal solid waste(MSW)incineration is playing an increasingly important role in municipal solid waste man-agement in China.The literatures on certain aspects of incineration plants in China are reviewed in this paper,including the development and status of the application of MSW incineration technologies,the treatment of leachate from stored MSW,air pollution control technologies,and the status of the fly-ash control method.Energy policy and its promotion of MSW-to-energy conversion are also elucidated.
基金supported by the National Natural Science Foundation of China (Grant Nos.51010008, 10972195)the National Basic Research Program of China ("973" Project) (Grant No.2012CB719800)
文摘Based on first-order kinetics of hydrolysis process, biodegradation of municipal solid waste (MSW) is assumed to obey a first-order decay equation which can take the direct effect of water content on biodegradation into account. Hydraulic model is an unsaturated-saturated flow model using mass conservation equations for fluids. Mechanical compression of MSW is ex- pressed by a stress-age coupled compression model. Through above models, a one-dimensional (I-D) bio-hydro-mechanical coupled model is established to analyze solid-liquid-gas interactions in landfilled MSW. Values of all the model parameters for current typical Chinese MSW are determined. Numerical analysis of a hypothetical waste sample in a closed system shows that gas pressure and gas concentration is extremely large which might cause severe gas explosion problem. Total gas production is about 267.0 m3 per wet ton of fresh wastes. For another hypothetical landfilled MSW layer, the coupled model predicts a dis- sipation of gas pressure during passive gas collection process. Annual gas production is large at the beginning of biodegradation, and then decreases with time. Surface settlement of the wastes increases quickly initially and then becomes stable with a compression strain of about 0.32 after 20 years.
文摘Incineration is widely adopted in municipal solid waste management,which produces large amounts of municipal solid waste incineration(MSWI)fly ash.The harmless treatment of MSWI fly ash requires the appropriate disposal of heavy metals and dioxins that are enriched in fly ash.This review summarizes recently developed harmless disposal methods for MSWI fly ash including solidification/stabilization,thermal treatment,and separation/extraction.In addition,we discuss heavy metal and dioxin fixation,and the removal capacity of fly ash via solidification/stabilization(including cement solidification,chemical stabilization,hydrothermal processes,and mechano-chemical methods),thermal treatment(including sintering,fuel-burning,or electric melting/vitrification),and separation/extraction(including water-washing,chemical reagent leaching,biological leaching,electrodialysis separation,chemical reagent extraction,and nanomaterials extraction).The advantages and disadvantages of different harmless treatment methods are compared and future research prospects and suggestions are summarized.This review provides general guidelines for the harmless treatment of MSWI fly ash in the future.
基金National Key R&D Program of China(Grant No.2108YFC1902906).
文摘Municipal Solid Waste(MSW)management in China has been transitioning from a mixed collection and treatment system to a separated collection and treatment system.The continuous rise of MSW treatment capacity and the optimization of technology structure provided basic facility support for China to promote MSW separation at source.China preferred a four-type separation system.Regulated recycling should be enhanced to improve the efficiency and sustainability of recycling industry.As food waste is the main composition of MSW in China,20%-30%of the food waste diversion and land application could maximize the comprehensive environmental performance.Incineration is to be the pillar technology in MSW separated treatment system in China.
文摘The effect of sulfur compounds (including sulfur, sulfide, sulfite and sulfate), initial concentration of heavy metal and operating conditions on Cd emission in municipal solid waste (MSW) incineration were investi-gated using a simulated tubular furnace and simulated MSW spiked with Cd. The concentration of Cd was meas-ured by inductively coupled plasma-atomic emission spectrometry (ICP-AES) after digesting the samples including bottom ash, fly ash and flue gas according to related USEPA methods. The results show that S and Na2S tend to in- crease Cd partitioning in bottom ash, whereas Na2SO3 and Na2SO4 tend to reduce Cd partitioning in bottom ash. The effect of sulfur compounds on Cd partitioning in bottom ash was in the sequence of Na2S〉S〉Na2SO3〉 Na2SO4. chemical equilibrium analysis is also performed to determine the effect of sorbents on Cd adsorption. The calculations show that S presents strong affinity for Cd and restrains Cd adsorption by SiO2, whereas when temperature rises to between 830℃ and 1030℃, Cd adsorption efficiency of SiO2 is over 80% and the efficiency of Al2O3 is up to 85%.
基金Project supported by the EU and the Spanish Ministry of Science and Technology.
文摘The addition of municipal solid wastes (MSW) is considered as a possible strategy for soil rehabilitation in southeast Spain. The objective of this study was to evaluate the long-term (17 years) effect of five doses of MSW addition on the microbiological, biochemical, and physical properties of semiarid soil. Increased values of several parameters that serve as indicators of general microbiological activity, such as, basal respiration, adenosine triphosphate (ATP) or dehydrogenase activity; microbial population size (microbial biomass C), and extracellular hydrolase activity related to macronutrient cycles, such as, urease, 3-glucosidase, and N-a-benzoyl-L-argininamide protease, were observed in the amended soils. The highest MSW doses showed the highest values in these hydrolase activities. The incorporation of municipal waste resulted in a more dense development of the plant cover, 50% greater in higher doses than in the control treatment, which generated a substantial increase in several C fractions. Total organic carbon reached 12 g kg^-1 soil with the highest MSW doses, compared to 4.30 g kg^-1 soil in the control treatment. The physical properties of the soil were also improved, showing greater percentage of stable aggregates and water holding capacity. Positive correlation coefficients between C fractions and parameters related to microbial activity and aggregate stability were observed. Although these improvements were greater in the soils receiving the highest doses of organic amendment, the increases were not proportional to the amount added, demonstrating the existence of a threshold, above which an increase in the amount of organic matter added is not reflected in an increase in the soil's physical, biochemical, and microbiological properties. However, the addition of municipal solid wastes proved its suitability for improving soil quality, thereby indicating the potential of such an amendment, to prevent desertification in Mediterranean areas such as those studied.
文摘Proper solid waste disposal is an important socioeconomic concern for all developing countries.Municipalities have their own policies,individual approaches and methods to manage the solid wastes.They consider wastelands outside the urban area as the best suitable for the solid waste disposal.Such improper site selection will create morphological changes that lead to environmental hazards in the urban and its surrounding areas.In this research,the site selection for urban solid waste disposal in the Coimbatore district used geographical information system(GIS)and multi-criteria decision analysis(MCDA).Thematic layers of lineament density,landuse/landcover,population density,groundwater depth,drainage density,slope,soil texture,geology and geomorphology were considered as primary criteria and weights for criteria,and sub-criteria were assigned by MCDA analysis.The resultant weight score was validated by consistency ratio so that the efficiency of the selected criteria was justified.The overlay analysis in GIS environment provides 17 potential zones in Coimbatore district,among which,four suitable sites were screened and refined with the help of field investigation and visual interpretation of satellite image.The result of landfill suitability map shows the effectiveness of the proposed method.
基金Projects 40372069 supported by the National Natural Science Foundation of ChinaNCET-05-0479 by the Program for New Century Excellent Talents in University0F4506 by the Science and Technology Foundation of China University of Mining and Technology
文摘A simulated landfill anaerobic bioreactor was used to characterize the anaerobic biodegradation and biogas generation of organic waste which was mainly composed of residuals of vegetables and foods. We investigated the dynamics of the coenzyme F420 activity and determined correlations between biogas yields, methane yields, methane concentration and coenzyme F420 activity. The experiment was carded out under different conditions from control without any treatment, addition of Fe^3+, microorganism inoculation to a combination of Fe3+ addition and inoculation at a temperature of 36±2℃. The experiment was lasted 120 d and coenzyme F420 activity was analyzed using ultraviolet spectrophotornetry. Experimental results indicated that activity of the coenzyme F420 treated by Fe and microorganism inoculation increased substantially. The waste treated by inoculation had the greatest increase. When the waste was treated by Fe^3+, inoculation and the combination of Fe^3+ and inoculation, biogas yields increased by 46.9%, 132.6% and 153.1%, respectively; while the methane yields increased 4, 97 and 98 times. Methane concentration varied between 0 and 6% in the control reactor, from 0 to 14% for waste treated by the addition of Fe^3+, from 0 to 59% for waste treated by inoculation and from 0 to 63% for waste treated by Fe^3+ addition and inoculation. Correlations between coenzyme F420 activity and biogas production, methane production and methane concentration proved to be positively significant (p〈0.05), except for the control. Consequently, coenzyme F420 activity could be used as an index for monitoring the activity of methanogens during anaerobic biodegradation of the organic fraction of municipal solid waste.
基金the National High-Tech Research and Development(863)Program of China(Grant No.2008AA06Z340)the National Natural Science Foundation of China(Grant No.50708068).
文摘Researches on the hydrothermal treatment of municipal solid waste incineration(MSWI)fly ash were conducted to eliminate dioxins and stabilize heavy metals.In order to enhance decomposing polychlorinated dibenzodioxins(PCDDs)and polychlorinated dibenzo-furans(PCDFs)during hydrothermal process,a strong reductant carbohydrazide(CHZ)is introduced.A hydrothermal reactor was set up by mixing raw MSWI fly ash or the pre-treated fly ash with water and then heated to a pre-set temperature;CHZ was spiked into solution according to specially defined dosage.Experimental results showed that under the temperatures of 518 K and 533 K,the decomposition rates of PCDDs/PCDFs were over 80%and 90%,respectively,by total concentration.However,their toxic equivalent(TEQ)decreased only slightly or even increased due to the rising in concentration of congeners 2,3,7,8-TCDD/TCDF,which might be resulted from the highly chlorinated congeners losing their chlorine atoms and being degraded during the hydrothermal process.Better results of TEQ reduction were also obtained under the higher tested temperature of 533 K and reactor with addition of 0.1%wt CHZ was corresponded to the best results.Good stabilization of heavy metals was also obtained in the same hydrothermal process especially when ferrous sulphate was added as auxiliary agent.
基金the Natural Science Foundation of Zhejiang Province (No. X206955)Zhejiang Medical and Health Research Fund (No. 2007A047)the Education Bureau of Zhejiang Prov-ince (No. N20080181), China
文摘Polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) emissions in flue gas from two types of municipal solid waste incinerators (MSWIs) most commonly used in China were investigated in this study. The selected incinerators include two grate-type MSWIs: MSWI-A (350 t/d) and MSWI-B 050 t/d), and two fluidized bed MSWIs: MSWI-C (400 t/d) and MSWI-D (400 t/d), which are all equipped with semi-dry lime scrubber and bag filter except MSWI-D equipped with cyclone and wet scrubber (WS) as air pollutant control device (APCD). Results indicated that the emission concentration and the international toxic equivalents (I-TEQs) of the PCDD/Fs from the stacks were in the range of 1.210-10.273 ng/Nm^3 and 0.019-0.201 ng I-TEQ/Nm^3, respectively. They were greatly lower than the emission regulation standard of PCDD/Fs in China (1.0 ng I-TEQ/Nm^3). However, only the PCDD/Fs emission level from MSWI-C was below 0.1 ng I-TEQ/Nm^3. Although the homologue profiles were distinct, the contributions of the 2,3,7,8-subsituted congeners to the total I-TEQ were similar among all the investigated MSWIs. Two major 2,3,7,8-substituted congeners, 2,3,4,7,8-PeCDF and 1,2,3,7,8-PeCDD, account for 47% and 9% (average values) of the total I-TEQ values, respectively. The correlation between PCDD/Fs levels and composition of flue gas was also discussed.
基金Supported by the National Basic Research Program of China (2011CB201502)
文摘The effect of moisture in municipal solid waste (MSW) on partitioning of lead (Pb), zinc (Zn), copper (Cu) and cadmium (Cd) was studied in a laboratory tubular furnace by using simulated MSW. The moisture in MSW influences heavy metals in following ways, to increase the moisture in flue gas and decrease the combustion temperature, to prolong the combustion time, and to prolong the releasing time of volatiles with the furnace temperature decreased by increasing the moisture. The volatilization of Pb, Zn and Cd was enhanced by increasing the moisture in MSW because of the prolonged combustion time. For Pb and Zn, the combustion time was important at higher temperature, while for Cd, it was important at low temperature. The moisture content showed slight effect on Cu partitioning. When extra chlorine was added to MSW, such as 1%PVC + 0.5%NaCl, the volatilization of Pb, Zn and Cu was enhanced by increasing the moisture because water evaporation reduced the temperature and increased devolatilization time. At higher temperature, NaCl tends to decompose and generates more free chlorine, producing more metal chlorides. Since Cd is a strong volatile heavy metal in MSW, the effect of moisture content on its volatilization is less than that of Pb, Zn or Cu during the MSW incineration.
文摘The greenhouse effect of methane (CH4) is only inferior to that of carbon dioxide (CO2). As an important anthropogenic emission source, the calculation of the emission amount of CH4 from waste treatment in landfills plays an important role in compiling greenhouse gases inventory and in estimating the climate change effects caused by increasing of greenhouse gases. Based on the previous work, and according to the sampling and analysis on municipal solid waste (MSW) in typical cities, the degradable organic carbon (DOC) percentile was identified in typical cities in recent years. According to the IPCC greenhouse gases inventory guideline and default method of CH4 emission from MSW landfills, and in light of MSW managing situation in different regions, the amount of CH4 emission was calculated. The results show that the amount of CH4 emission decreases geographically from east to west and it increases temporally from 1994 to 2004 in China.
基金Project(50808184) supported by the National Natural Science Foundation of China
文摘To analyze the feasibility of utilization of thermal technology in fly ash treatment, thermal properties and microstructures of municipal solid waste incineration (MSW1) fly ash were studied by measuring the chemical element composition, specific surface area, pore sizes, functional groups, TEM image, mineralogy and DSC-TG curves of raw and sintered fly ash specimens. The results show that MSWI fly ash particles mostly have irregular shapes and non-typical pore structure, and the supersonic treatment improves the pore structure; MSWI fly ash consists of Such crystals as SiO2, CaSO4 and silica-aluminates, and some soluble salts like KCl and NaCl. During the sintering process, mineralogy changes largely and novel solid solutions are produced gradually with the rise of temperature. Therefore, the utilization of a proper thermal technology not only destructs those persistent organic toxicants but also stabilizes hazardous heavy metals in MSWI fly ash.
文摘China has a large solid waste stockpile and a low resource utilisation rate,and the utilisation of solid waste resources is of great significance in promoting sustainable social development.In order to further promote the green and efficient development of China's road field,an overview of the current status of the application,research progress,hot frontiers,problems and their countermeasures based on the three aspects of industrial solid wastes,engineering solid wastes and municipal solid wastes in highway engineering was conducted,and the development prospect of the resourceful utilisation of solid waste in highway engineering was outlooked,with a view to promoting the development of China's green roads.Statistics on the stockpile,utilisation and comprehensive utilisation rate of industrial solid wastes in China are presented,and the optimal mixing amount,production process and application technology of industrial solid wastes for road base materials are systematically summarised.Based on the concept of high-value utilisation of solid waste,the mechanical properties,durability,construction technology and quality control standards of engineering solid waste applied in roadbed engineering are summarised,and the difficulties in the application of engineering solid waste in road engineering are summarised.Finally,the feasibility,mechanical properties and environmental characteristics of municipal solid waste domestic waste incinerator slag,waste tyres and plastics applied in road engineering are summarised.This review can provide references and lessons for the design and development of green roads,and promote the innovation and development of greening road engineering.
基金This work was supported by the National Natural Science Foundation of China (Grant No.U1610254)Shanxi Province Coal-based key Technology Research and Development Program (Grant No.MD2014-03).
文摘Mixed incineration of municipal solid waste (MSW) in existing coal gangue power plant is a potentially highefficiency and low-cost MSW disposal way. In this paper, the co-combustion and pollutants emission characteristic of MSW and coal gangue was investigated in a circulating fluidized bed (CFB) combustor. The effect of MSW blend ratio, bed temperature and excess air ratio was detailedly studied. The results show the NOX and HC1 emission increases with the increasing MSW blend ratio and the SO2 emission decreases. With the increase of bed temperature, the CO emission decreases while the NOX and SO2 emission increases. The HC1 emission is nearly stable in the temperature range of 850-950℃. The increase of excess air ratio gradually increases the NOX emission but has no significant effect on the SO2 emission. The HC1 emission firstly increases and then decreases with the increase of excess air ratio. For a typical CFB operating condition with excess air ratio of 1.4, bed temperature of 900℃ and MSW blend ratio of 10%, the original CO, NOX, SO2 and HC1 emissions are 52, 181, 3373 and 58 mg/Nm^3 respectively.
基金supported by the Ministry of Higher Education of Malaysia through Fundamental Research Grant Scheme(No.FRGS/1/2019/TK10/UIAM/02/2).
文摘Population growth,waste generation,and massive waste mismanagement have led to environmental catastrophe.Management of municipal solid waste(MSW)requires an efficient and sustainable integrated system.The integrated thermal processing of MSW is one of the best waste management techniques.In this study,energy analysis of MSW is carried out based on the material and energy balance of 2000 kg wet MSW,which contains 50%leachate.Once the leachate is removed,the dry MSW is sent for carbon content enhancement in carbonization to produce MSW-based char.Thereafter,the combustion of MSW-based char provided high heat and syngas to be used in a hydrothermal process for MSW leachate treatment.The result shows that the char fuel of MSW produces a sufficient amount of energy,13501.29 MJ(84.55%),in the form of synthetic gas by-product,which has a big potential as an energy source.The novelty of the proposed integrated thermal system is to produce 84.55%synthetic gas by-product,which is used for electricity production,cooking,food,and heat energy for industrial purposes.The proposed applications of this paper offer insightful information for policymaking regarding novel MSW techniques,which are economical,energy-efficient,and environmentally friendly.Thus,it increases the effectiveness of MSW utilization.
基金Department of Transport/Sun GrantUS Department of Agriculture/ Department of Energy+4 种基金Minnesota Legislative-Citizen Commission on Minnesota ResourcesMetropolitan Council Environmental ServicesUniversity of Minnesota MNDrive programsUniversity of Minnesota Center for BiorefiningChina Scholarship Council (CSC) for their financial support for this work
文摘Organic solid and liquid wastes contain large amounts of energy, nutrients, and water, and should not be perceived as merely waste. Recycling, composting, and combustion of non-recyclables have been practiced for decades to capture the energy and values from municipal solid wastes. Treatment and disposal have been the primary management strategy for wastewater. As new technologies are emerging, alternative options for the utilization of both solid wastes and wastewater have become available. Considering the complexity of the chemical, physical, and biological properties of these wastes, multiple technologies may be required to maximize the energy and value recovery from the wastes. For this purpose, biorefin- ing tends to be an appropriate approach to completely utilize the energy and value available in wastes. Research has demonstrated that non-recyclable waste materials and bio-solids can be converted into usable heat, electricity, fuel, and chemicals through a variety of processes, and the liquid waste streams have the potential to support crop and algae growth and provide other energy recovery and food production options. In this paper, we propose new biorefining schemes aimed at organic solid and liquid wastes from municipal sources, food and biological processing plants, and animal production facilities. Four new breakthrough technologies-namely, vacuum-assisted thermophilic anaerobic digestion, extended aquaponics, oily wastes to biodiesel via glycerolysis, and microwave-assisted thermochemical conversion-can be incorporated into the biorefining schemes, thereby enabling the complete utilization of those wastes for the production of chemicals, fertilizer, energy (biogas, syngas, biodiesel, and bio-oil), foods, and feeds, and resulting in clean water and a significant reduction in pollutant emissions.
文摘Municipal solid waste(MSW)is accumulating over elapsed time across the world,and it is observed in many projects associated with weak soils,such as marl.Therefore,effective solutions to the environmental problem are essential.Conventional techniques for stabilizing marl generally use substances such as lime and cement,which could exacerbate pollution.For this,some new stabilizers,e.g.nano-MgO,are used.There are large quantities of marls and MSW in Shiraz City,Iran.The present study aims to evaluate the feasibility of using nano-MgO as a green low-carbon binder to remove MSW from the environment and make construction projects more cost-effective.Consolidated drained shear tests were conducted to evaluate the mechanical behaviors of the nano-MgO treated marl specimens at high normal stresses.The marl specimens containing MSW percentages of 15%,25%,35%,and 45%and nano-MgO percentages of 0.25%,0.5%,0.75%,and 1%,were used.It is found that the marl containing 15%and 25%MSW and 0.5%nano-MgO at 28-d curing can perform cation exchange and form new cementitious products.The soils with merely MSW show good performance due to the removal of the kaolinite and the formation of brucite.However,the soil with 25%MSW and 0.5%nano-MgO shows the same strength enhancement as the specimen with the optimal nano-MgO(0.75%)through the formation of dolomite,with a 20.59%increase in strain energy(SE).