为提高运动想象脑电信号特征的区分性,提出一种基于多元变分模态分解(MVMD)的多域特征结合脑电特征提取方法。首先利用MVMD对原始脑电多通道数据进行自适应分解,然后从分解得到的固有模态函数(IMF)分量提取信号的时域特征以及非线性动...为提高运动想象脑电信号特征的区分性,提出一种基于多元变分模态分解(MVMD)的多域特征结合脑电特征提取方法。首先利用MVMD对原始脑电多通道数据进行自适应分解,然后从分解得到的固有模态函数(IMF)分量提取信号的时域特征以及非线性动力学特征,同时将IMF分量合并构造新的信号矩阵,并采用共空间模式(CSP)法对重构信号提取空间特征,进行时域、非线性动力学以及空域特征的结合,最后通过支持向量机(SVM)对此特征集分类。所提方法在BCI Competition II Dataset III数据集上达到了89.64%的分类准确率,与现有的方法比较,验证了所提方法的有效性。展开更多
文摘为提高运动想象脑电信号特征的区分性,提出一种基于多元变分模态分解(MVMD)的多域特征结合脑电特征提取方法。首先利用MVMD对原始脑电多通道数据进行自适应分解,然后从分解得到的固有模态函数(IMF)分量提取信号的时域特征以及非线性动力学特征,同时将IMF分量合并构造新的信号矩阵,并采用共空间模式(CSP)法对重构信号提取空间特征,进行时域、非线性动力学以及空域特征的结合,最后通过支持向量机(SVM)对此特征集分类。所提方法在BCI Competition II Dataset III数据集上达到了89.64%的分类准确率,与现有的方法比较,验证了所提方法的有效性。