期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于VME-M1DCNN-LSTM的齿轮异常状态智能识别
1
作者 杜文友 王宇琦 +2 位作者 崔霄 徐伟 崔建国 《沈阳航空航天大学学报》 2023年第5期50-55,共6页
针对工程实际中齿轮振动信号受噪声污染严重导致其异常状态难以准确识别的问题,提出了一种基于变分模态提取(variational mode extraction,VME)和多尺度一维卷积(multiscale one-dimensional convolution,M1DCNN)融合长短时记忆神经网络... 针对工程实际中齿轮振动信号受噪声污染严重导致其异常状态难以准确识别的问题,提出了一种基于变分模态提取(variational mode extraction,VME)和多尺度一维卷积(multiscale one-dimensional convolution,M1DCNN)融合长短时记忆神经网络(long short-term memory,LSTM)的齿轮异常状态智能识别新方法。首先,采用VME方法分别对采集到的齿轮处于正常状态、轮齿碎裂、齿轮断齿、齿根裂纹以及齿轮磨损等5种状态的原始振动信号进行预处理,去除原始振动信号中的噪声干扰,提取齿轮不同状态的主模态分量作为齿轮状态的特征信息;其次,由提取的齿轮状态主模态分量构建训练数据集与测试数据集;最后,设计了M1DCNN-LSTM异常状态识别模型,并采用所构建的数据集对设计的异常状态识别模型进行了测试试验验证。结果表明,所提出的方法可以很好地实现齿轮异常状态智能识别效能,异常状态识别准确率达99.25%,明显高于其他相关齿轮异常状态识别方法。 展开更多
关键词 齿轮 异常状态识别 变分模态提取 多尺度一维卷积 长短时记忆神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部