This paper discusses the singular ( n\|1,1 ) conjugate boundary value problem as follows by using a fixed point index theorem in cones[HL(2:1,Z;2,Z]u (n) (t)+a(t)f(u(w(t)))=0,(0<t<1), u(t)=φ(t),(-τ≤t&l...This paper discusses the singular ( n\|1,1 ) conjugate boundary value problem as follows by using a fixed point index theorem in cones[HL(2:1,Z;2,Z]u (n) (t)+a(t)f(u(w(t)))=0,(0<t<1), u(t)=φ(t),(-τ≤t<0), u (j) (0)=u(1)=0,(1≤j≤n-2).Effort is devoted to give some sufficient conditions for which the equation has at least two positive solutions.An example to illustrate the application of this theorem is given. [FQ(6*2。39,X-W]展开更多
基金Supported by the NSF of Guangdong Province!( 980 0 1 8) Higher Education Bureau!( 1 99873)
文摘This paper discusses the singular ( n\|1,1 ) conjugate boundary value problem as follows by using a fixed point index theorem in cones[HL(2:1,Z;2,Z]u (n) (t)+a(t)f(u(w(t)))=0,(0<t<1), u(t)=φ(t),(-τ≤t<0), u (j) (0)=u(1)=0,(1≤j≤n-2).Effort is devoted to give some sufficient conditions for which the equation has at least two positive solutions.An example to illustrate the application of this theorem is given. [FQ(6*2。39,X-W]