期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Siam-UNet+ +的高分辨率遥感影像建筑物变化检测
被引量:
16
1
作者
朱节中
陈永
+1 位作者
柯福阳
张果荣
《计算机应用研究》
CSCD
北大核心
2021年第11期3460-3465,共6页
针对同一区域前后时序的高分辨率遥感影像背景复杂、变化类别多样、目标变化检测时存在漏检和边界识别粗糙问题,提出了一种基于Siam-UNet++深度神经网络的高分辨率遥感影像建筑物变化检测算法。该算法采用UNet++作为骨干提取网络,在其...
针对同一区域前后时序的高分辨率遥感影像背景复杂、变化类别多样、目标变化检测时存在漏检和边界识别粗糙问题,提出了一种基于Siam-UNet++深度神经网络的高分辨率遥感影像建筑物变化检测算法。该算法采用UNet++作为骨干提取网络,在其编码器部分应用Siam-diff(Siamese-difference)结构提取前后两时序图像的变化特征,并在解码阶段的上采样和横向跳跃路径连接之后引入注意力机制,突出建筑物变化的特征,抑制网络对其他类别特征的学习;同时使用多边输出融合(multiple side-output fusion,MSOF)策略加权融合不同语义层次的特征信息,提高了建筑物变化检测的精度;最后采取滑窗的方法对大尺度遥感影像进行预测,减少拼接过程中变化结果图产生的空洞图斑。在大型建筑物变化检测数据集上的实验结果表明,该算法有效提升了建筑物的变化检测效果。
展开更多
关键词
深度学习
Siam-UNet++
变化检测
注意力机制
多边输出融合
下载PDF
职称材料
题名
基于Siam-UNet+ +的高分辨率遥感影像建筑物变化检测
被引量:
16
1
作者
朱节中
陈永
柯福阳
张果荣
机构
南京信息工程大学滨江学院
南京信息工程大学自动化学院
南京信息工程大学遥感与测绘工程学院
出处
《计算机应用研究》
CSCD
北大核心
2021年第11期3460-3465,共6页
基金
江苏省“六大人才高峰”高层次人才项目(XYDDX-045)
西宁市科技计划项目(2019-Y-12)
+1 种基金
国家级大学生创新训练项目(201910300047)
无锡市现代产业发展资金项目(003231911161)。
文摘
针对同一区域前后时序的高分辨率遥感影像背景复杂、变化类别多样、目标变化检测时存在漏检和边界识别粗糙问题,提出了一种基于Siam-UNet++深度神经网络的高分辨率遥感影像建筑物变化检测算法。该算法采用UNet++作为骨干提取网络,在其编码器部分应用Siam-diff(Siamese-difference)结构提取前后两时序图像的变化特征,并在解码阶段的上采样和横向跳跃路径连接之后引入注意力机制,突出建筑物变化的特征,抑制网络对其他类别特征的学习;同时使用多边输出融合(multiple side-output fusion,MSOF)策略加权融合不同语义层次的特征信息,提高了建筑物变化检测的精度;最后采取滑窗的方法对大尺度遥感影像进行预测,减少拼接过程中变化结果图产生的空洞图斑。在大型建筑物变化检测数据集上的实验结果表明,该算法有效提升了建筑物的变化检测效果。
关键词
深度学习
Siam-UNet++
变化检测
注意力机制
多边输出融合
Keywords
deep
learning
Siam-UNet++
change
detection
attention
mechanism
multiple
side
-
output
fusion
strategy
分类号
TP751.1 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Siam-UNet+ +的高分辨率遥感影像建筑物变化检测
朱节中
陈永
柯福阳
张果荣
《计算机应用研究》
CSCD
北大核心
2021
16
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部