We extend the multiple-scattering theory (MST) for elastic wave scattering and propagating in two-dimensional composite. The formalism for the band structure calculation is presented by taking into account the full ve...We extend the multiple-scattering theory (MST) for elastic wave scattering and propagating in two-dimensional composite. The formalism for the band structure calculation is presented by taking into account the full vector character of the elastic wave. As a demonstration of application of the formalism we calculate the band structure of elastic wave propagating in a two-dimensional periodic arrangement of cylinders. The results manifest that the MST shows great promise in complementing the plane-wave (PW) approach for the study of elastic wave.展开更多
The multiple scattering theory has been a powerful tool in determining the effective properties of heterogeneous materials. In this paper , a simple relationship between the scattering theory and the micromechanics th...The multiple scattering theory has been a powerful tool in determining the effective properties of heterogeneous materials. In this paper , a simple relationship between the scattering theory and the micromechanics theory based on the Eshelby principle has been suggested. According to the relationship, a new and simple approximate solution to the exact multiple scattering theory has been given in terms of Eshelby' s S-tensor. The solution easily shows those known results for isotropic composites with spherical inclusions and for tracnsversely isotropic composites, and first gives non-setf-consistent (average t-matrix) and symmetric self-consistent (effective medium or coherent potential) approximate results for isotropic composites with spheroidal inclusions.展开更多
文摘We extend the multiple-scattering theory (MST) for elastic wave scattering and propagating in two-dimensional composite. The formalism for the band structure calculation is presented by taking into account the full vector character of the elastic wave. As a demonstration of application of the formalism we calculate the band structure of elastic wave propagating in a two-dimensional periodic arrangement of cylinders. The results manifest that the MST shows great promise in complementing the plane-wave (PW) approach for the study of elastic wave.
基金This work was supported by the National H-Tech Program under contract No.863-7152101
文摘The multiple scattering theory has been a powerful tool in determining the effective properties of heterogeneous materials. In this paper , a simple relationship between the scattering theory and the micromechanics theory based on the Eshelby principle has been suggested. According to the relationship, a new and simple approximate solution to the exact multiple scattering theory has been given in terms of Eshelby' s S-tensor. The solution easily shows those known results for isotropic composites with spherical inclusions and for tracnsversely isotropic composites, and first gives non-setf-consistent (average t-matrix) and symmetric self-consistent (effective medium or coherent potential) approximate results for isotropic composites with spheroidal inclusions.