为充分利用浅层特征中的细节纹理信息对人种特性的描述能力,挖掘具有区分性部位的表达特征对人种分类的作用,更好利用数据不同层次的特征与区分性部位以提供更具鲁棒性的人种信息,提出一种基于加权特征融合与局部特征注意的人种分类模型...为充分利用浅层特征中的细节纹理信息对人种特性的描述能力,挖掘具有区分性部位的表达特征对人种分类的作用,更好利用数据不同层次的特征与区分性部位以提供更具鲁棒性的人种信息,提出一种基于加权特征融合与局部特征注意的人种分类模型(weighted feature fusion and local feature attention model,WFLA)。模型设计加权特征融合模块增强浅层与深层特征的交互,构建局部特征注意模块重点关注区分性部位。在3个公开数据集中的大规模验证实验验证了WFLA模型在人种分类任务中具有明显优势。展开更多
Multicomponent superconductors exhibit nontrivial vortex behaviors due to the various vortex–vortex interactions,including the competing one in the recently proposed type-1.5 superconductor.However,potential candidat...Multicomponent superconductors exhibit nontrivial vortex behaviors due to the various vortex–vortex interactions,including the competing one in the recently proposed type-1.5 superconductor.However,potential candidate that can be used to study the multicomponent superconductivity is rare.Here,we prepared an artificial superconducting multilayer to act as an alternative approach to study multicomponent superconductivity.The additional repulsive length and the coupling strength among superconducting films were regulated by changing the thickness of the insulting layer.The magnetization measurements were performed to clarify the effect of the competition between the repulsive vortex interactions on the macroscopic superconductivity.The vortex phase diagram and the optimum critical current density have been determined.Furthermore,a second magnetization effect is observed,and is attributed to the upper layer,which provides the weak pinning sites to localize the flux lines.The pinning behaviors switches to the mixed type with the increase of the insulting layer thicknesses.Our results open a new perspective to the study and related applications of the multilayer superconducting systems.展开更多
Experimental and theoretical researches on nanostructured exchange coupled magnets have been carried out since about 1988. Here, we review the structure and magnetic properties of the anisotropic nanocomposite soft/ha...Experimental and theoretical researches on nanostructured exchange coupled magnets have been carried out since about 1988. Here, we review the structure and magnetic properties of the anisotropic nanocomposite soft/hard multilayer magnets including some new results and phenomena from an experimental point of view. According to the different component of the oriented hard phase in the nanocomposite soft/hard multilayer magnets, three types of magnets will be discussed:1) anisotropic Nd2Fe(14)B based nanocomposite multilayer magnets, 2) anisotropic SmCo5 based nanocomposite multilayer magnets, and 3) anisotropic rare-earth free based nanocomposite multilayer magnets. For each of them, the formation of the oriented hard phase, exchange coupling, coercivity mechanism, and magnetic properties of the corresponding anisotropic nanocomposite multilayer magnets are briefly reviewed, and then the prospect of realization of bulk magnets on new results of anisotropic nanocomposite multilayer magnets will be carried out.展开更多
FePt (50 nm) and [FePt(a nm)/MgO(b nm)5/glass (a=1, 2, 3; b=1, 2, 3) films were prepared by radio frequency (RF) magnetron sputtering technique, and then were annealed at 600℃ for 30 min. The effect of MgO ...FePt (50 nm) and [FePt(a nm)/MgO(b nm)5/glass (a=1, 2, 3; b=1, 2, 3) films were prepared by radio frequency (RF) magnetron sputtering technique, and then were annealed at 600℃ for 30 min. The effect of MgO layer thickness on the structures and magnetic properties of the FePt/MgO multilayers was investigated. The coercivities and inter-grain interactions of the FePt/MgO films were decreased, yet the degree of (001) texturing drastically increased with the increase in MgO layer thickness when the FePt layer thickness was fixed. Thus, the FePt/MgO films with appropriate coercivities, high perpendicular anisotropy, and weak intergrain interactions were obtained by controlling the MgO layer thickness. Overall, these results indicate that the FePt/MgO nanostructured films are promising candidates for future high-density perpendicular recording media.展开更多
The stability against various environmental stresses of the curcumin-loaded secondary and tertiary emulsions that was emulsified by whey protein isolate(WPI)and coated by chitosan(CHI),carboxymethyl konjac glucomannan...The stability against various environmental stresses of the curcumin-loaded secondary and tertiary emulsions that was emulsified by whey protein isolate(WPI)and coated by chitosan(CHI),carboxymethyl konjac glucomannan(CMKGM),or their combination through layer-by-layer assembly was investigated.Generally,the multilayered emulsions were destabilized in high Na Cl concentrations or medium p H that could interrupt the electrostatic interaction between the three polyelectrolytes or deprotonate CHI,indicating that electrostatic interaction played an important role in the stability of emulsions.Compared with the primary emulsion that was solely stabilized by WPI,extra coating with CHI and CMKGM generally increased the stability of the emulsion against repeated freezing-thawing,improved the retention of curcumin against heating,UV irradiation,and long-term storage,and the effects were more remarkable in the tertiary emulsion with CMKGM locating in the outmost layer.Since CMKGM has shown the colon-targeted delivery potency,the multilayered emulsions assembled by layer-by-layer deposition,especially the tertiary emulsion,could be used as an effective carrier for the targeted delivery of curcumin.展开更多
Exchange interaction plays an important role on magnetic properties of nanocomposite magnets consisting of hard- and soft-magnetic phases. Here the exchange interaction in the Sm-Co/Co (and Fe65Co35) magnetic films ...Exchange interaction plays an important role on magnetic properties of nanocomposite magnets consisting of hard- and soft-magnetic phases. Here the exchange interaction in the Sm-Co/Co (and Fe65Co35) magnetic films was characterized by measuring static (mr(H)) and demagnetized (md(H)) remanence curves. According to conventional method: δm(H)=md(H) - [1 - 2mr(H)], the exchange interaction was evaluated. The switching fields H′p and Hp, at which static (mr(H)) and demagnetized (md(H)) remanence show the fastest change, were identified. The relative ratio η=Hp-H′p/Hp of switching fields H′p and Hp has a linear relationship with the maximum value δmmax of δm(H) curves, proposing an alternative way to characterize the exchange interaction.展开更多
The electronic structures of Co3 Cu3 superlattices with the orientations of (100), (110) and (111) are calculated by the first-principle method within the framework of the density functional theory. It has been ...The electronic structures of Co3 Cu3 superlattices with the orientations of (100), (110) and (111) are calculated by the first-principle method within the framework of the density functional theory. It has been found that the spin-dependent scattering and charge transfers are prominent at interfaces compared to the interior layers for the three orientation superlattices. We also evaluate the magnetoresistance ratio by using the two-current model. The results show that the giant magnetoresistance ratio decreases in the order of (110), (100), (111) orientations for Co3Cu3 models (49.4%, 37. 7%, 29.3%, respectively). Further analysis shows that an expansion of average atomic volume would enhance the magnetic moment of Co, which is consistent with other calculation and experimental results. In addition, the giant magnetoresistance effect is analysed from the point of charge transfer.展开更多
文摘为充分利用浅层特征中的细节纹理信息对人种特性的描述能力,挖掘具有区分性部位的表达特征对人种分类的作用,更好利用数据不同层次的特征与区分性部位以提供更具鲁棒性的人种信息,提出一种基于加权特征融合与局部特征注意的人种分类模型(weighted feature fusion and local feature attention model,WFLA)。模型设计加权特征融合模块增强浅层与深层特征的交互,构建局部特征注意模块重点关注区分性部位。在3个公开数据集中的大规模验证实验验证了WFLA模型在人种分类任务中具有明显优势。
基金Project supported by the National Natural Science Foundation of China (Grant No. 12174242)the National Key Research and Development Program of China (Grant No. 2018YFA0704300)+1 种基金the Key Research Project of Zhejiang Laboratory (Grant No. 2021PE0AC02)the support by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning
文摘Multicomponent superconductors exhibit nontrivial vortex behaviors due to the various vortex–vortex interactions,including the competing one in the recently proposed type-1.5 superconductor.However,potential candidate that can be used to study the multicomponent superconductivity is rare.Here,we prepared an artificial superconducting multilayer to act as an alternative approach to study multicomponent superconductivity.The additional repulsive length and the coupling strength among superconducting films were regulated by changing the thickness of the insulting layer.The magnetization measurements were performed to clarify the effect of the competition between the repulsive vortex interactions on the macroscopic superconductivity.The vortex phase diagram and the optimum critical current density have been determined.Furthermore,a second magnetization effect is observed,and is attributed to the upper layer,which provides the weak pinning sites to localize the flux lines.The pinning behaviors switches to the mixed type with the increase of the insulting layer thicknesses.Our results open a new perspective to the study and related applications of the multilayer superconducting systems.
基金Project supported by the State Key Project of Research and Development of China(Grant No.2017YFA0206302)the National Nature Science Foundation of China(Grant Nos.51590883,51331006,and 51471167)the Chinese Academy of Sciences(Grant No.KJZD-EW-M05-3)
文摘Experimental and theoretical researches on nanostructured exchange coupled magnets have been carried out since about 1988. Here, we review the structure and magnetic properties of the anisotropic nanocomposite soft/hard multilayer magnets including some new results and phenomena from an experimental point of view. According to the different component of the oriented hard phase in the nanocomposite soft/hard multilayer magnets, three types of magnets will be discussed:1) anisotropic Nd2Fe(14)B based nanocomposite multilayer magnets, 2) anisotropic SmCo5 based nanocomposite multilayer magnets, and 3) anisotropic rare-earth free based nanocomposite multilayer magnets. For each of them, the formation of the oriented hard phase, exchange coupling, coercivity mechanism, and magnetic properties of the corresponding anisotropic nanocomposite multilayer magnets are briefly reviewed, and then the prospect of realization of bulk magnets on new results of anisotropic nanocomposite multilayer magnets will be carried out.
基金This work was financially supported by the National Natural Science Foundation of China (No.10574085)the Opening Foundation of the Key Laboratory of Shanxi Province (200503010)the Key Project of the Ministry of Education of China (No.207020).
文摘FePt (50 nm) and [FePt(a nm)/MgO(b nm)5/glass (a=1, 2, 3; b=1, 2, 3) films were prepared by radio frequency (RF) magnetron sputtering technique, and then were annealed at 600℃ for 30 min. The effect of MgO layer thickness on the structures and magnetic properties of the FePt/MgO multilayers was investigated. The coercivities and inter-grain interactions of the FePt/MgO films were decreased, yet the degree of (001) texturing drastically increased with the increase in MgO layer thickness when the FePt layer thickness was fixed. Thus, the FePt/MgO films with appropriate coercivities, high perpendicular anisotropy, and weak intergrain interactions were obtained by controlling the MgO layer thickness. Overall, these results indicate that the FePt/MgO nanostructured films are promising candidates for future high-density perpendicular recording media.
基金financial support from the Natural Science Foundation of Shandong Province(ZR2015CM037)the National Science Foundation of China(31571890)。
文摘The stability against various environmental stresses of the curcumin-loaded secondary and tertiary emulsions that was emulsified by whey protein isolate(WPI)and coated by chitosan(CHI),carboxymethyl konjac glucomannan(CMKGM),or their combination through layer-by-layer assembly was investigated.Generally,the multilayered emulsions were destabilized in high Na Cl concentrations or medium p H that could interrupt the electrostatic interaction between the three polyelectrolytes or deprotonate CHI,indicating that electrostatic interaction played an important role in the stability of emulsions.Compared with the primary emulsion that was solely stabilized by WPI,extra coating with CHI and CMKGM generally increased the stability of the emulsion against repeated freezing-thawing,improved the retention of curcumin against heating,UV irradiation,and long-term storage,and the effects were more remarkable in the tertiary emulsion with CMKGM locating in the outmost layer.Since CMKGM has shown the colon-targeted delivery potency,the multilayered emulsions assembled by layer-by-layer deposition,especially the tertiary emulsion,could be used as an effective carrier for the targeted delivery of curcumin.
基金financially supported by the National High-Tech Research and Development Program of China("863"Program)under Grant No.2002AA302603the National Natural Science Foundation of China under Grant Nos.50071062,59725103,and 50331030.
文摘Exchange interaction plays an important role on magnetic properties of nanocomposite magnets consisting of hard- and soft-magnetic phases. Here the exchange interaction in the Sm-Co/Co (and Fe65Co35) magnetic films was characterized by measuring static (mr(H)) and demagnetized (md(H)) remanence curves. According to conventional method: δm(H)=md(H) - [1 - 2mr(H)], the exchange interaction was evaluated. The switching fields H′p and Hp, at which static (mr(H)) and demagnetized (md(H)) remanence show the fastest change, were identified. The relative ratio η=Hp-H′p/Hp of switching fields H′p and Hp has a linear relationship with the maximum value δmmax of δm(H) curves, proposing an alternative way to characterize the exchange interaction.
基金Supported by the National Nature Science Foundation of China under Grant No 50371003 and the Foundation for National Excellent Doctoral Dissertations of China under Grant No 200334.
文摘The electronic structures of Co3 Cu3 superlattices with the orientations of (100), (110) and (111) are calculated by the first-principle method within the framework of the density functional theory. It has been found that the spin-dependent scattering and charge transfers are prominent at interfaces compared to the interior layers for the three orientation superlattices. We also evaluate the magnetoresistance ratio by using the two-current model. The results show that the giant magnetoresistance ratio decreases in the order of (110), (100), (111) orientations for Co3Cu3 models (49.4%, 37. 7%, 29.3%, respectively). Further analysis shows that an expansion of average atomic volume would enhance the magnetic moment of Co, which is consistent with other calculation and experimental results. In addition, the giant magnetoresistance effect is analysed from the point of charge transfer.