Efficient optical network management poses significant importance in backhaul and access network communicationfor preventing service disruptions and ensuring Quality of Service(QoS)satisfaction.The emerging faultsin o...Efficient optical network management poses significant importance in backhaul and access network communicationfor preventing service disruptions and ensuring Quality of Service(QoS)satisfaction.The emerging faultsin optical networks introduce challenges that can jeopardize the network with a variety of faults.The existingliterature witnessed various partial or inadequate solutions.On the other hand,Machine Learning(ML)hasrevolutionized as a promising technique for fault detection and prevention.Unlike traditional fault managementsystems,this research has three-fold contributions.First,this research leverages the ML and Deep Learning(DL)multi-classification system and evaluates their accuracy in detecting six distinct fault types,including fiber cut,fibereavesdropping,splicing,bad connector,bending,and PC connector.Secondly,this paper assesses the classificationdelay of each classification algorithm.Finally,this work proposes a fiber optics fault prevention algorithm thatdetermines to mitigate the faults accordingly.This work utilized a publicly available fiber optics dataset namedOTDR_Data and applied different ML classifiers,such as Gaussian Naive Bayes(GNB),Logistic Regression(LR),Support Vector Machine(SVM),K-Nearest Neighbor(KNN),Random Forest(RF),and Decision Tree(DT).Moreover,Ensemble Learning(EL)techniques are applied to evaluate the accuracy of various classifiers.In addition,this work evaluated the performance of DL-based Convolutional Neural Network and Long-Short Term Memory(CNN-LSTM)hybrid classifier.The findings reveal that the CNN-LSTM hybrid technique achieved the highestaccuracy of 99%with a delay of 360 s.On the other hand,EL techniques improved the accuracy in detecting fiberoptic faults.Thus,this research comprehensively assesses accuracy and delay metrics for various classifiers andproposes the most efficient attack detection system in fiber optics.展开更多
Image has become an essential medium for expressing meaning and disseminating information.Many images are uploaded to the Internet,among which some are pornographic,causing adverse effects on public psychological heal...Image has become an essential medium for expressing meaning and disseminating information.Many images are uploaded to the Internet,among which some are pornographic,causing adverse effects on public psychological health.To create a clean and positive Internet environment,network enforcement agencies need an automatic and efficient pornographic image recognition tool.Previous studies on pornographic images mainly rely on convolutional neural networks(CNN).Because of CNN’s many parameters,they must rely on a large labeled training dataset,which takes work to build.To reduce the effect of the database on the recognition performance of pornographic images,many researchers view pornographic image recognition as a binary classification task.In actual application,when faced with pornographic images of various features,the performance and recognition accuracy of the network model often decrease.In addition,the pornographic content in images usually lies in several small-sized local regions,which are not a large proportion of the image.CNN,this kind of strong supervised learning method,usually cannot automatically focus on the pornographic area of the image,thus affecting the recognition accuracy of pornographic images.This paper established an image dataset with seven classes by crawling pornographic websites and Baidu Image Library.A weakly supervised pornographic image recognition method based on multiple instance learning(MIL)is proposed.The Squeeze and Extraction(SE)module is introduced in the feature extraction to strengthen the critical information and weaken the influence of non-key and useless information on the result of pornographic image recognition.To meet the requirements of the pooling layer operation in Multiple Instance Learning,we introduced the idea of an attention mechanism to weight and average instances.The experimental results show that the proposed method has better accuracy and F1 scores than other methods.展开更多
The exponential increase in new coronavirus disease 2019(COVID-19)cases and deaths has made COVID-19 the leading cause of death in many countries.Thus,in this study,we propose an efficient technique for the automatic ...The exponential increase in new coronavirus disease 2019(COVID-19)cases and deaths has made COVID-19 the leading cause of death in many countries.Thus,in this study,we propose an efficient technique for the automatic detection of COVID-19 and pneumonia based on X-ray images.A stacked denoising convolutional autoencoder(SDCA)model was proposed to classify X-ray images into three classes:normal,pneumonia,and COVID-19.The SDCA model was used to obtain a good representation of the input data and extract the relevant features from noisy images.The proposed model’s architecture mainly composed of eight autoencoders,which were fed to two dense layers and SoftMax classifiers.The proposed model was evaluated with 6356 images from the datasets from different sources.The experiments and evaluation of the proposed model were applied to an 80/20 training/validation split and for five cross-validation data splitting,respectively.The metrics used for the SDCA model were the classification accuracy,precision,sensitivity,and specificity for both schemes.Our results demonstrated the superiority of the proposed model in classifying X-ray images with high accuracy of 96.8%.Therefore,this model can help physicians accelerate COVID-19 diagnosis.展开更多
在模糊多分类问题中,由于训练样本在训练过程中所起的作用不同,对所有数据包括异常数据赋予一个隶属度。针对模糊支持向量机(fuzzy support vectormachines,FSVM)的第一种形式,引入类中心的概念,结合一对多1-a-a(one-against-all)组合...在模糊多分类问题中,由于训练样本在训练过程中所起的作用不同,对所有数据包括异常数据赋予一个隶属度。针对模糊支持向量机(fuzzy support vectormachines,FSVM)的第一种形式,引入类中心的概念,结合一对多1-a-a(one-against-all)组合分类方法,提出了一种基于一对多组合的模糊支持向量机多分类算法,并与1-a-1(one-against-one)组合和1-a-a组合的分类算法比较。数值实验表明,该算法是有效的,有较高的分类准确率,有更好的泛化能力。展开更多
基金in part by the National Natural Science Foundation of China under Grants 62271079,61875239,62127802in part by the Fundamental Research Funds for the Central Universities under Grant 2023PY01+1 种基金in part by the National Key Research and Development Program of China under Grant 2018YFB2200903in part by the Beijing Nova Program with Grant Number Z211100002121138.
文摘Efficient optical network management poses significant importance in backhaul and access network communicationfor preventing service disruptions and ensuring Quality of Service(QoS)satisfaction.The emerging faultsin optical networks introduce challenges that can jeopardize the network with a variety of faults.The existingliterature witnessed various partial or inadequate solutions.On the other hand,Machine Learning(ML)hasrevolutionized as a promising technique for fault detection and prevention.Unlike traditional fault managementsystems,this research has three-fold contributions.First,this research leverages the ML and Deep Learning(DL)multi-classification system and evaluates their accuracy in detecting six distinct fault types,including fiber cut,fibereavesdropping,splicing,bad connector,bending,and PC connector.Secondly,this paper assesses the classificationdelay of each classification algorithm.Finally,this work proposes a fiber optics fault prevention algorithm thatdetermines to mitigate the faults accordingly.This work utilized a publicly available fiber optics dataset namedOTDR_Data and applied different ML classifiers,such as Gaussian Naive Bayes(GNB),Logistic Regression(LR),Support Vector Machine(SVM),K-Nearest Neighbor(KNN),Random Forest(RF),and Decision Tree(DT).Moreover,Ensemble Learning(EL)techniques are applied to evaluate the accuracy of various classifiers.In addition,this work evaluated the performance of DL-based Convolutional Neural Network and Long-Short Term Memory(CNN-LSTM)hybrid classifier.The findings reveal that the CNN-LSTM hybrid technique achieved the highestaccuracy of 99%with a delay of 360 s.On the other hand,EL techniques improved the accuracy in detecting fiberoptic faults.Thus,this research comprehensively assesses accuracy and delay metrics for various classifiers andproposes the most efficient attack detection system in fiber optics.
基金This work is supported by the Academic Research Project of Henan Police College(Grant:HNJY-2021-QN-14 and HNJY202220)the Key Technology R&D Program of Henan Province(Grant:222102210041).
文摘Image has become an essential medium for expressing meaning and disseminating information.Many images are uploaded to the Internet,among which some are pornographic,causing adverse effects on public psychological health.To create a clean and positive Internet environment,network enforcement agencies need an automatic and efficient pornographic image recognition tool.Previous studies on pornographic images mainly rely on convolutional neural networks(CNN).Because of CNN’s many parameters,they must rely on a large labeled training dataset,which takes work to build.To reduce the effect of the database on the recognition performance of pornographic images,many researchers view pornographic image recognition as a binary classification task.In actual application,when faced with pornographic images of various features,the performance and recognition accuracy of the network model often decrease.In addition,the pornographic content in images usually lies in several small-sized local regions,which are not a large proportion of the image.CNN,this kind of strong supervised learning method,usually cannot automatically focus on the pornographic area of the image,thus affecting the recognition accuracy of pornographic images.This paper established an image dataset with seven classes by crawling pornographic websites and Baidu Image Library.A weakly supervised pornographic image recognition method based on multiple instance learning(MIL)is proposed.The Squeeze and Extraction(SE)module is introduced in the feature extraction to strengthen the critical information and weaken the influence of non-key and useless information on the result of pornographic image recognition.To meet the requirements of the pooling layer operation in Multiple Instance Learning,we introduced the idea of an attention mechanism to weight and average instances.The experimental results show that the proposed method has better accuracy and F1 scores than other methods.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research Group No.RG-1441-379 and for their technical support.
文摘The exponential increase in new coronavirus disease 2019(COVID-19)cases and deaths has made COVID-19 the leading cause of death in many countries.Thus,in this study,we propose an efficient technique for the automatic detection of COVID-19 and pneumonia based on X-ray images.A stacked denoising convolutional autoencoder(SDCA)model was proposed to classify X-ray images into three classes:normal,pneumonia,and COVID-19.The SDCA model was used to obtain a good representation of the input data and extract the relevant features from noisy images.The proposed model’s architecture mainly composed of eight autoencoders,which were fed to two dense layers and SoftMax classifiers.The proposed model was evaluated with 6356 images from the datasets from different sources.The experiments and evaluation of the proposed model were applied to an 80/20 training/validation split and for five cross-validation data splitting,respectively.The metrics used for the SDCA model were the classification accuracy,precision,sensitivity,and specificity for both schemes.Our results demonstrated the superiority of the proposed model in classifying X-ray images with high accuracy of 96.8%.Therefore,this model can help physicians accelerate COVID-19 diagnosis.
文摘在模糊多分类问题中,由于训练样本在训练过程中所起的作用不同,对所有数据包括异常数据赋予一个隶属度。针对模糊支持向量机(fuzzy support vectormachines,FSVM)的第一种形式,引入类中心的概念,结合一对多1-a-a(one-against-all)组合分类方法,提出了一种基于一对多组合的模糊支持向量机多分类算法,并与1-a-1(one-against-one)组合和1-a-a组合的分类算法比较。数值实验表明,该算法是有效的,有较高的分类准确率,有更好的泛化能力。