Excitons dominate the photonic and optoelectronic properties of a material.Although significant advancements exist in understanding various types of excitons,progress on excitons that are indirect in both real-and mom...Excitons dominate the photonic and optoelectronic properties of a material.Although significant advancements exist in understanding various types of excitons,progress on excitons that are indirect in both real-and momentum-spaces is still limited.Here,we demonstrate the real-and momentum-indirect neutral and charged excitons(including their phonon replicas)in a multi-valley semiconductor of bilayer MoS_(2),by performing electric-field/doping-density dependent photoluminescence.Together with first-principles calculations,we uncover that the observed real-and momentum-indirect exciton involves electron/hole from K/Γvalley,solving the longstanding controversy of its momentum origin.Remarkably,the binding energy of real-and momentum-indirect charged exciton is extremely large(i.e.,~59 meV),more than twice that of real-and momentum-direct charged exciton(i.e.,~24 meV).The giant binding energy,along with the electrical tunability and long lifetime,endows real-and momentum-indirect excitons an emerging platform to study many-body physics and to illuminate developments in photonics and optoelectronics.展开更多
基金This work was supported by the National Natural Science Foundation of China(NSFC)(12274447,61888102,11834017,61734001,and 12074412)the National Key Research and Development Program(2021YFA1202900 and 2021YFA1400502)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDB30000000)the Key-Area Research and Development Program of Guangdong Province(2020B0101340001).
文摘Excitons dominate the photonic and optoelectronic properties of a material.Although significant advancements exist in understanding various types of excitons,progress on excitons that are indirect in both real-and momentum-spaces is still limited.Here,we demonstrate the real-and momentum-indirect neutral and charged excitons(including their phonon replicas)in a multi-valley semiconductor of bilayer MoS_(2),by performing electric-field/doping-density dependent photoluminescence.Together with first-principles calculations,we uncover that the observed real-and momentum-indirect exciton involves electron/hole from K/Γvalley,solving the longstanding controversy of its momentum origin.Remarkably,the binding energy of real-and momentum-indirect charged exciton is extremely large(i.e.,~59 meV),more than twice that of real-and momentum-direct charged exciton(i.e.,~24 meV).The giant binding energy,along with the electrical tunability and long lifetime,endows real-and momentum-indirect excitons an emerging platform to study many-body physics and to illuminate developments in photonics and optoelectronics.