Precision Agriculture (PA) recognizes and manages intra-field spatial variability to increase profitability and reduced environmental impact. Site Specific Crop Management (SSCM), a form of PA, subdivides a cropping f...Precision Agriculture (PA) recognizes and manages intra-field spatial variability to increase profitability and reduced environmental impact. Site Specific Crop Management (SSCM), a form of PA, subdivides a cropping field into uniformly manageable zones, based on quantitative measurement of yield limiting factors. In Mediterranean environments, the spatial and temporal yield variability of rain-fed cropping system is strongly influenced by the spatial variability of Plant Available Water-holding Capacity (PAWC) and its strong interaction with temporally variable seasonal rainfall. The successful adoption of SSCM depends on the understanding of both spatial and temporal variabilities in cropping fields. Remote sensing phenological metrics provide information about the biophysical growth conditions of crops across fields. In this paper, we examine the potential of phenological metrics to assess the spatial and temporal crop yield variability across a wheat cropping field at Minnipa, South Australia. The Minnipa field was classified into three management zones using prolonged observations including soil assessment and multiple year yield data. The main analytical steps followed in this study were: calculation of the phenological metrics using time series NDVI data from Moderate Resolution Imaging Spectroscope (MODIS) for 15 years (2001-2015);producing spatial trend and temporal variability maps of phenological metrics;and finally, assessment of association between the spatial patterns and temporal variability of the metrics with management zones of the cropping field. The spatial trend of the seasonal peak NDVI metric showed significant association with the management zone pattern. In terms of temporal variability, Time-integrated NDVI (TINDVI) showed higher variability in the “good” zone compared with the “poor” zone. This indicates that the magnitude of the seasonal peak is more sensitive to soil related factors across the field, whereas TINDVI is more sensitive to seasonal variability. The interpretation 展开更多
Southwest China is one of three major forest regions in China and plays an important role in carbon sequestration.Accurate estimations of changes in aboveground biomass are critical for understanding forest carbon cyc...Southwest China is one of three major forest regions in China and plays an important role in carbon sequestration.Accurate estimations of changes in aboveground biomass are critical for understanding forest carbon cycling and promoting climate change mitigation.Southwest China is characterized by complex topographic features and forest canopy structures,complicating methods for mapping aboveground biomass and its dynamics.The integration of continuous Landsat images and national forest inventory data provides an alternative approach to develop a long-term monitoring program of forest aboveground biomass dynamics.This study explores the development of a methodological framework using historical national forest inventory plot data and Landsat TM timeseries images.This method was formulated by comparing two parametric methods:Linear Regression for Multiple Independent Variables(MLR),and Partial Least Square Regression(PLSR);and two nonparametric methods:Random Forest(RF)and Gradient Boost Regression Tree(GBRT)based on the state of forest aboveground biomass and change models.The methodological framework mapped Pinus densata aboveground biomass and its changes over time in Shangri-la,Yunnan,China.Landsat images and national forest inventory data were acquired for 1987,1992,1997,2002 and 2007.The results show that:(1)correlation and homogeneity texture measures were able to characterize forest canopy structures,aboveground biomass and its dynamics;(2)GBRT and RF predicted Pinus densata aboveground biomass and its changes better than PLSR and MLR;(3)GBRT was the most reliable approach in the estimation of aboveground biomass and its changes;and,(4)the aboveground biomass change models showed a promising improvement of prediction accuracy.This study indicates that the combination of GBRT state and change models developed using temporal Landsat and national forest inventory data provides the potential for developing a methodological framework for the long-term mapping and monitoring program of forest aboveground biomass 展开更多
文摘Precision Agriculture (PA) recognizes and manages intra-field spatial variability to increase profitability and reduced environmental impact. Site Specific Crop Management (SSCM), a form of PA, subdivides a cropping field into uniformly manageable zones, based on quantitative measurement of yield limiting factors. In Mediterranean environments, the spatial and temporal yield variability of rain-fed cropping system is strongly influenced by the spatial variability of Plant Available Water-holding Capacity (PAWC) and its strong interaction with temporally variable seasonal rainfall. The successful adoption of SSCM depends on the understanding of both spatial and temporal variabilities in cropping fields. Remote sensing phenological metrics provide information about the biophysical growth conditions of crops across fields. In this paper, we examine the potential of phenological metrics to assess the spatial and temporal crop yield variability across a wheat cropping field at Minnipa, South Australia. The Minnipa field was classified into three management zones using prolonged observations including soil assessment and multiple year yield data. The main analytical steps followed in this study were: calculation of the phenological metrics using time series NDVI data from Moderate Resolution Imaging Spectroscope (MODIS) for 15 years (2001-2015);producing spatial trend and temporal variability maps of phenological metrics;and finally, assessment of association between the spatial patterns and temporal variability of the metrics with management zones of the cropping field. The spatial trend of the seasonal peak NDVI metric showed significant association with the management zone pattern. In terms of temporal variability, Time-integrated NDVI (TINDVI) showed higher variability in the “good” zone compared with the “poor” zone. This indicates that the magnitude of the seasonal peak is more sensitive to soil related factors across the field, whereas TINDVI is more sensitive to seasonal variability. The interpretation
基金supported by the State Forestry Administration of China under the national forestry commonwealth project grant#201404309the Expert Workstation of Academician Tang Shouzheng of Yunnan Province,the Yunnan provincial key project of Forestrythe Research Center of Kunming Forestry Information Engineering Technology
文摘Southwest China is one of three major forest regions in China and plays an important role in carbon sequestration.Accurate estimations of changes in aboveground biomass are critical for understanding forest carbon cycling and promoting climate change mitigation.Southwest China is characterized by complex topographic features and forest canopy structures,complicating methods for mapping aboveground biomass and its dynamics.The integration of continuous Landsat images and national forest inventory data provides an alternative approach to develop a long-term monitoring program of forest aboveground biomass dynamics.This study explores the development of a methodological framework using historical national forest inventory plot data and Landsat TM timeseries images.This method was formulated by comparing two parametric methods:Linear Regression for Multiple Independent Variables(MLR),and Partial Least Square Regression(PLSR);and two nonparametric methods:Random Forest(RF)and Gradient Boost Regression Tree(GBRT)based on the state of forest aboveground biomass and change models.The methodological framework mapped Pinus densata aboveground biomass and its changes over time in Shangri-la,Yunnan,China.Landsat images and national forest inventory data were acquired for 1987,1992,1997,2002 and 2007.The results show that:(1)correlation and homogeneity texture measures were able to characterize forest canopy structures,aboveground biomass and its dynamics;(2)GBRT and RF predicted Pinus densata aboveground biomass and its changes better than PLSR and MLR;(3)GBRT was the most reliable approach in the estimation of aboveground biomass and its changes;and,(4)the aboveground biomass change models showed a promising improvement of prediction accuracy.This study indicates that the combination of GBRT state and change models developed using temporal Landsat and national forest inventory data provides the potential for developing a methodological framework for the long-term mapping and monitoring program of forest aboveground biomass