Inspired by macroscale 3D pixel mechanical metamaterials and microscale straw-like carbon nanotube,we propose a design of multi-stable straw-like carbon nanotubes(MSCNT)via optimizing the structure of a unit to obtain...Inspired by macroscale 3D pixel mechanical metamaterials and microscale straw-like carbon nanotube,we propose a design of multi-stable straw-like carbon nanotubes(MSCNT)via optimizing the structure of a unit to obtain multiple stable states under dis-placement loading by molecular dynamics.The unit of MSCNT is mirror-symmetrically connected two truncated graphene cones with specific apex angles.By switching the LJ term in AIREBO potential,we verify that the bistability of unit is co-determined by snap-through instability and microscale adhesions.Moreover,we examine the validity of the multi-stability of the unit cells arranged in series and in parallels.Simulation results indicate that the MSCNT can achieve mechanical programmability in microscale,which triggers many potential applications in need of customizing nanos-cale mechanical behaviors.展开更多
Morphing technology is one of the most effective methods to improve the flight efficiency of aircraft.Traditional control surfaces based morphing method is mature and widely used on current civil and military aircraft...Morphing technology is one of the most effective methods to improve the flight efficiency of aircraft.Traditional control surfaces based morphing method is mature and widely used on current civil and military aircraft,but insufficiently effective for the entire flight envelope.Recent research on morphing wing still faces the challenge that the skin material for morphing should be both deformable and stiff.In this study,a continuous morphing trailing-edge wing with a new multi-stable nano skin material fabricated using surface mechanical attrition treatment technology was proposed and designed.Computational fluid dynamics simulation was used to study the aerodynamic performance of the continuous morphing trailing-edge wing.Results show that the lift coefficient increases with the increase of deflection angle and so does the lift-drag ratio at a small angle of attack.More importantly,compared with the wing using flaps,the continuous morphing trailing-edge wing can reduce drag during the morphing process and its overall aerodynamic performance is improved at a large angle of attack range.Flow field analysis reveals that the continuous morphing method can delay flow separation in some situations.展开更多
基金the National Natural Science Foundation of China(Nos.12225201 and 12102021)the China Postdoctoral Science Foundation(No.2020M680287)are gratefully acknowledged.
文摘Inspired by macroscale 3D pixel mechanical metamaterials and microscale straw-like carbon nanotube,we propose a design of multi-stable straw-like carbon nanotubes(MSCNT)via optimizing the structure of a unit to obtain multiple stable states under dis-placement loading by molecular dynamics.The unit of MSCNT is mirror-symmetrically connected two truncated graphene cones with specific apex angles.By switching the LJ term in AIREBO potential,we verify that the bistability of unit is co-determined by snap-through instability and microscale adhesions.Moreover,we examine the validity of the multi-stability of the unit cells arranged in series and in parallels.Simulation results indicate that the MSCNT can achieve mechanical programmability in microscale,which triggers many potential applications in need of customizing nanos-cale mechanical behaviors.
基金This work is supported by the Major Program of National Natural Science Foundation of China(No.:NSFC51590892)the Shenzhen Municipal Science and Technology Innovation Commission of China(No.:JCYJ20160229165310679).
文摘Morphing technology is one of the most effective methods to improve the flight efficiency of aircraft.Traditional control surfaces based morphing method is mature and widely used on current civil and military aircraft,but insufficiently effective for the entire flight envelope.Recent research on morphing wing still faces the challenge that the skin material for morphing should be both deformable and stiff.In this study,a continuous morphing trailing-edge wing with a new multi-stable nano skin material fabricated using surface mechanical attrition treatment technology was proposed and designed.Computational fluid dynamics simulation was used to study the aerodynamic performance of the continuous morphing trailing-edge wing.Results show that the lift coefficient increases with the increase of deflection angle and so does the lift-drag ratio at a small angle of attack.More importantly,compared with the wing using flaps,the continuous morphing trailing-edge wing can reduce drag during the morphing process and its overall aerodynamic performance is improved at a large angle of attack range.Flow field analysis reveals that the continuous morphing method can delay flow separation in some situations.