The bi-directional energy conversion components such as gas-fired generators(GfG)and power-to-gas(P2G)have enhanced the interactions between power and gas systems.This paper focuses on the steady-state energy flow ana...The bi-directional energy conversion components such as gas-fired generators(GfG)and power-to-gas(P2G)have enhanced the interactions between power and gas systems.This paper focuses on the steady-state energy flow analysis of an integrated power-gas system(IPGS)with bi-directional energy conversion components.Considering the shortcomings of adjusting active power balance only by single GfG unit and the capacity limitation of slack bus,a multi-slack bus(MSB)model is proposed for integrated power-gas systems,by combining the advantages of bi-directional energy conversion components in adjusting active power.The components are modeled as participating units through iterative participation factors solved by the power sensitivity method,which embeds the effect of system conditions.On this basis,the impact of the mixed problem of multi-type gas supply sources(such as hydrogen and methane generated by P2G)on integrated system is considered,and the gas characteristics-specific gravity(SG)and gross calorific value(GCV)are modeled as state variables to obtain a more accurate operational results.Finally,a bi-directional energy flow solver with iterative SG,GCV and participation factors is developed to assess the steady-state equilibrium point of IPGS based on Newton-Raphson method.The applicability of proposed methodology is demonstrated by analyzing an integrated IEEE 14-bus power system and a Belgian 20-node gas system.展开更多
The natural gas system and electricity system are coupled tightly by gas turbines in an integrated energy system. The uncertainties of one system will not only threaten its own safe operation but also be likely to hav...The natural gas system and electricity system are coupled tightly by gas turbines in an integrated energy system. The uncertainties of one system will not only threaten its own safe operation but also be likely to have a significant impact on the other. Therefore, it is necessary to study the variation of state variables when random fluctuations emerge in the coupled system. In this paper, a multislack-bus model is proposed to calculate the power and gas flow in the coupled system. A unified probabilistic power and gas flow calculation, in which the cumulant method and Gram–Charlier expansion are applied, is first presented to obtain the distribution of state variables after considering the effects of uncertain factors. When the variation range of random factors is too large, a new method of piecewise linearization is put forward to achieve a better fitting precision of probability distribution. Compared to the Monte Carlo method, the proposed method can reduce computation time greatly while reaching a satisfactory accuracy.The validity of the proposed methods is verified in a coupled system that consists of a 15-node natural gas system and the IEEE case24 power system.展开更多
文摘The bi-directional energy conversion components such as gas-fired generators(GfG)and power-to-gas(P2G)have enhanced the interactions between power and gas systems.This paper focuses on the steady-state energy flow analysis of an integrated power-gas system(IPGS)with bi-directional energy conversion components.Considering the shortcomings of adjusting active power balance only by single GfG unit and the capacity limitation of slack bus,a multi-slack bus(MSB)model is proposed for integrated power-gas systems,by combining the advantages of bi-directional energy conversion components in adjusting active power.The components are modeled as participating units through iterative participation factors solved by the power sensitivity method,which embeds the effect of system conditions.On this basis,the impact of the mixed problem of multi-type gas supply sources(such as hydrogen and methane generated by P2G)on integrated system is considered,and the gas characteristics-specific gravity(SG)and gross calorific value(GCV)are modeled as state variables to obtain a more accurate operational results.Finally,a bi-directional energy flow solver with iterative SG,GCV and participation factors is developed to assess the steady-state equilibrium point of IPGS based on Newton-Raphson method.The applicability of proposed methodology is demonstrated by analyzing an integrated IEEE 14-bus power system and a Belgian 20-node gas system.
基金supported by National Key Research and Development Program of China(No.2016YFB0901903)Key Program of National Natural Science Foundation of China(No.51637008)State Key Laboratory of Electrical Insulation and Power Equipment in Xi’an Jiaotong University(No.EIPE14106)
文摘The natural gas system and electricity system are coupled tightly by gas turbines in an integrated energy system. The uncertainties of one system will not only threaten its own safe operation but also be likely to have a significant impact on the other. Therefore, it is necessary to study the variation of state variables when random fluctuations emerge in the coupled system. In this paper, a multislack-bus model is proposed to calculate the power and gas flow in the coupled system. A unified probabilistic power and gas flow calculation, in which the cumulant method and Gram–Charlier expansion are applied, is first presented to obtain the distribution of state variables after considering the effects of uncertain factors. When the variation range of random factors is too large, a new method of piecewise linearization is put forward to achieve a better fitting precision of probability distribution. Compared to the Monte Carlo method, the proposed method can reduce computation time greatly while reaching a satisfactory accuracy.The validity of the proposed methods is verified in a coupled system that consists of a 15-node natural gas system and the IEEE case24 power system.