发电厂厂区内违规吸烟易导致火灾、爆炸等事故,会带来巨大损失;针对电厂内人员违规吸烟行为检测精度不高的问题,提出一种基于改进YOLOv5s(You Only Look Once v5s)的电厂内人员违规吸烟检测方法;该方法以YOLOv5s网络为基础,将YOLOv5s网...发电厂厂区内违规吸烟易导致火灾、爆炸等事故,会带来巨大损失;针对电厂内人员违规吸烟行为检测精度不高的问题,提出一种基于改进YOLOv5s(You Only Look Once v5s)的电厂内人员违规吸烟检测方法;该方法以YOLOv5s网络为基础,将YOLOv5s网络C3模块Bottleneck中的3×3卷积替换为多头自注意力层以提高算法的学习能力;接着在网络中添加ECA(Efficient Channel Attention)注意力模块,让网络更加关注待检测目标;同时将YOLOv5s网络的损失函数替换为SIoU(Scylla Intersection over Union),进一步提高算法的检测精度;最后采用加权双向特征金字塔网络(BiFPN,Bidirectional Feature Pyramid Network)代替原先YOLOv5s的特征金字塔网络,快速进行多尺度特征融合;实验结果表明,改进后算法吸烟行为的检测精度为89.3%,与改进前算法相比平均精度均值(mAP,mean Average Precision)提高了2.2%,检测效果显著提升,具有较高应用价值。展开更多
针对钢轨表面缺陷检测效率较低及抗干扰能力较差的问题,提出一种基于改进YOLOv5的钢轨表面缺陷检测算法.首先,采用图像增强操作对采集到的钢轨表面图像进行预处理,减轻高光、异物等噪声对检测效果的影响.其次,将多头自注意力层嵌入YOLOv...针对钢轨表面缺陷检测效率较低及抗干扰能力较差的问题,提出一种基于改进YOLOv5的钢轨表面缺陷检测算法.首先,采用图像增强操作对采集到的钢轨表面图像进行预处理,减轻高光、异物等噪声对检测效果的影响.其次,将多头自注意力层嵌入YOLOv5骨干网络末端,并为缺陷特征引入全局依赖关系,提升模型对密集缺陷的检测效果.最后,构建跨层加权级联结构,将浅层信息融入到深层网络中,使网络对缺陷边界的回归更为精准.实验结果表明:本文的钢轨表面缺陷检测算法对裂纹、剥落、磨损3类表面缺陷检测的平均精度均值达到98.2%,每秒帧数(Frames Per Second,FPS)达到77帧/s,能够在不同的环境条件中实现对缺陷的精准检测,比其他某些同类算法拥有更高的鲁棒性、准确性和实时性.展开更多
文摘发电厂厂区内违规吸烟易导致火灾、爆炸等事故,会带来巨大损失;针对电厂内人员违规吸烟行为检测精度不高的问题,提出一种基于改进YOLOv5s(You Only Look Once v5s)的电厂内人员违规吸烟检测方法;该方法以YOLOv5s网络为基础,将YOLOv5s网络C3模块Bottleneck中的3×3卷积替换为多头自注意力层以提高算法的学习能力;接着在网络中添加ECA(Efficient Channel Attention)注意力模块,让网络更加关注待检测目标;同时将YOLOv5s网络的损失函数替换为SIoU(Scylla Intersection over Union),进一步提高算法的检测精度;最后采用加权双向特征金字塔网络(BiFPN,Bidirectional Feature Pyramid Network)代替原先YOLOv5s的特征金字塔网络,快速进行多尺度特征融合;实验结果表明,改进后算法吸烟行为的检测精度为89.3%,与改进前算法相比平均精度均值(mAP,mean Average Precision)提高了2.2%,检测效果显著提升,具有较高应用价值。
文摘针对钢轨表面缺陷检测效率较低及抗干扰能力较差的问题,提出一种基于改进YOLOv5的钢轨表面缺陷检测算法.首先,采用图像增强操作对采集到的钢轨表面图像进行预处理,减轻高光、异物等噪声对检测效果的影响.其次,将多头自注意力层嵌入YOLOv5骨干网络末端,并为缺陷特征引入全局依赖关系,提升模型对密集缺陷的检测效果.最后,构建跨层加权级联结构,将浅层信息融入到深层网络中,使网络对缺陷边界的回归更为精准.实验结果表明:本文的钢轨表面缺陷检测算法对裂纹、剥落、磨损3类表面缺陷检测的平均精度均值达到98.2%,每秒帧数(Frames Per Second,FPS)达到77帧/s,能够在不同的环境条件中实现对缺陷的精准检测,比其他某些同类算法拥有更高的鲁棒性、准确性和实时性.