期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
多尺度水上船舶目标视觉检测 被引量:1
1
作者 黄靖 汤宁 +3 位作者 文元桥 郭玉滨 朱立夫 肖长诗 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第5期103-113,共11页
水上交通场景环境复杂,通过普通光学摄像设备获取的水面图像,面临着视觉目标清晰度低、尺度多样化等问题,使得可见光视觉信号里中、小尺度目标检测相对困难。为服务于各类智慧海事应用,提出了一个旨在提高复杂水域背景下多尺度水上船舶... 水上交通场景环境复杂,通过普通光学摄像设备获取的水面图像,面临着视觉目标清晰度低、尺度多样化等问题,使得可见光视觉信号里中、小尺度目标检测相对困难。为服务于各类智慧海事应用,提出了一个旨在提高复杂水域背景下多尺度水上船舶目标检测性能的算法(multi-scale ship object detection,MS-SOD)。该算法基于当前计算机视觉技术中主流的单阶段目标检测模型框架,在其主干网络中嵌入卷积注意力模块,来优化船舶特征提取能力;在多尺度特征融合网络中引入富含细节信息的浅层特征,并使用跨阶段局部残差结构,来优化多尺度船舶特征的融合机制;同时,使用焦点损失函数,来优化模型的学习过程;并设计自适应锚框聚类算法优化先验锚框,以提高多尺度船舶目标检测能力。为验证提出算法的有效性和实效性,在构建较大规模水上船舶目标数据集的基础上,开展了广泛实验验证。结果表明:提出的算法在测试数据集上的检测准确度超过了各主流的对比方法;特别是对于大、中、小各尺度船舶目标的检测精度,相对于主流的YOLOv4算法,提出的算法分别提升了11.3%、6.0%和10.5%。 展开更多
关键词 多尺度船舶 目标检测 深度学习 注意力机制 特征融合
下载PDF
复杂场景下多尺度船舶实时检测方法 被引量:5
2
作者 周薇娜 刘露 《电信科学》 2022年第10期67-78,共12页
船舶检测在军事侦察、海上目标跟踪、海上交通管制等任务中发挥着重要作用。然而,受船舶外形尺度多变和复杂海面背景的影响,在复杂海面上检测多尺度船舶仍然是一个挑战。针对此难题,提出了一种基于多层信息交互融合和注意力机制的YOLOv... 船舶检测在军事侦察、海上目标跟踪、海上交通管制等任务中发挥着重要作用。然而,受船舶外形尺度多变和复杂海面背景的影响,在复杂海面上检测多尺度船舶仍然是一个挑战。针对此难题,提出了一种基于多层信息交互融合和注意力机制的YOLOv4改进方法。该方法主要通过多层信息交互融合(multi-layer information interactive fusion,MLIF)模块和多注意感受野(multi-attention receptive field,MARF)模块构建一个双向细粒度特征金字塔。其中,MLIF模块用于融合不同尺度的特征,不仅能将深层的高级语义特征串联在一起,而且将较浅层的丰富特征进行重塑;MARF由感受野模块(receptive field block,RFB)与注意力机制模块组成,能有效地强调重要特征并抑制冗余特征。此外,为了进一步评估提出方法的性能,在新加坡海事数据集(Singapore maritime dataset,SMD)上进行了实验。实验结果表明,所提方法能有效地解决复杂海洋环境下多尺度船舶检测的难题,且同时满足了实时需求。 展开更多
关键词 多尺度船舶检测 多层信息交互融合 多注意感受野 双向细粒度特征金字塔
下载PDF
复杂场景下自适应特征融合的多尺度船舶检测 被引量:1
3
作者 罗芳 刘阳 何道森 《计算机应用》 CSCD 北大核心 2023年第11期3587-3593,共7页
受台风、大雾、雨雪等复杂天气以及遮挡、尺度变化等影响,现有船舶检测方法存在误检和漏检问题。针对上述复杂场景问题,在YOLOX-S模型的基础上,提出一种自适应特征融合的多尺度船舶检测方法。首先,在主干特征提取网络中引入特征增强模块... 受台风、大雾、雨雪等复杂天气以及遮挡、尺度变化等影响,现有船舶检测方法存在误检和漏检问题。针对上述复杂场景问题,在YOLOX-S模型的基础上,提出一种自适应特征融合的多尺度船舶检测方法。首先,在主干特征提取网络中引入特征增强模块,抑制复杂背景噪声对船舶特征提取的干扰;其次,考虑深浅层次特征融合比例问题,设计自适应特征融合模块,充分利用深浅层次特征,提高模型的多尺度船舶检测能力;最后,在检测头网络,将检测头解耦,并引入自适应的多任务损失函数,平衡分类任务和回归任务,提高船舶检测的鲁棒性。实验结果显示,所提方法在公开船舶检测数据集SeaShips和McShips上的检测平均精度均值(mAP)分别达到了97.43%和96.10%,检测速度达到每秒189帧,满足实时检测的要求,验证了所提方法在复杂场景下仍能对多尺度船舶目标实现高精度检测。 展开更多
关键词 多尺度船舶检测 YOLOX 自适应特征融合 特征增强 多任务损失函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部