期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
基于多分支并行空洞卷积的多尺度目标检测算法 被引量:9
1
作者 袁帅 王康 +1 位作者 单义 杨金福 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2021年第6期864-872,共9页
针对现有的目标检测算法在提取特征时往往仅使用单一尺度大小的卷积核,忽略了不同尺度特征感受野的差异,从而影响网络对不同尺度目标的检测效果的问题,提出一种基于多分支并行空洞卷积的多尺度目标检测算法.首先,采用基础网络VGG-16对... 针对现有的目标检测算法在提取特征时往往仅使用单一尺度大小的卷积核,忽略了不同尺度特征感受野的差异,从而影响网络对不同尺度目标的检测效果的问题,提出一种基于多分支并行空洞卷积的多尺度目标检测算法.首先,采用基础网络VGG-16对待检测图像进行特征提取;其次,在网络的低层引入多分支并行空洞卷积,对不同扩张率的空洞卷积进行融合,从而获取多尺度特征信息,提高网络对不同尺度特征的提取能力;然后,采用非局部化结构整合特征的全局空间信息,进而增强上下文信息;最后,在不同尺度大小的特征图上执行目标的检测与定位任务.在PASCAL VOC数据集和MS COCO数据集上的实验结果表明,所提算法能有效地提高网络对不同尺度目标的检测准确率,对小目标检测效果有明显改善. 展开更多
关键词 深度学习 目标检测 空洞卷积 多尺度特征图
下载PDF
基于单一神经网络的多尺度人脸检测 被引量:8
2
作者 刘宏哲 杨少鹏 +2 位作者 袁家政 王雪峤 薛建明 《电子与信息学报》 EI CSCD 北大核心 2018年第11期2598-2605,共8页
人脸检测是指检测并定位输入图像中所有的人脸,并返回精确的人脸位置和大小,是目标检测的重要方向。为了解决人脸尺度多样性给人脸检测造成的困难,该文提出一种新的基于单一神经网络的特征图融合多尺度人脸检测算法。该算法在不同大小... 人脸检测是指检测并定位输入图像中所有的人脸,并返回精确的人脸位置和大小,是目标检测的重要方向。为了解决人脸尺度多样性给人脸检测造成的困难,该文提出一种新的基于单一神经网络的特征图融合多尺度人脸检测算法。该算法在不同大小的卷积层上预测人脸,实现实时多尺度人脸检测,并通过将浅层的特征图融合引入上下文信息提高小尺寸人脸检测精度。在数据集FDDB和WIDERFACE测试结果表明,所提方法达到了先进人脸检测的水平,并且该方法去掉了框推荐过程,因此检测速度更快。在WIDERFACE难、适中、简单3个子数据集上测试结果分别为87.9%, 93.2%, 93.4%MAP,检测速度为35 fps。所提算法与目前效果较好的极小人脸检测方法相比,在保证精度的同时提高了人脸检测速度。 展开更多
关键词 多尺度人脸检测 上下文信息 特征图融合 卷积神经网络
下载PDF
轻量级YOLOv3的交通标志检测算法 被引量:8
3
作者 白士磊 殷柯欣 朱建启 《计算机与现代化》 2020年第9期83-88,94,共7页
交通标志检测在自动驾驶领域一直是个比较热门的课题。在深度学习算法中,YOLOv3和Faster R-CNN已经获得了极好的目标检测性能,但在检测小目标时,存在漏检的情况。针对交通标志检测中小目标准确快速识别的需求,本文提出一种轻量级YOLOv3... 交通标志检测在自动驾驶领域一直是个比较热门的课题。在深度学习算法中,YOLOv3和Faster R-CNN已经获得了极好的目标检测性能,但在检测小目标时,存在漏检的情况。针对交通标志检测中小目标准确快速识别的需求,本文提出一种轻量级YOLOv3的交通标志检测算法。通过卷积神经网络同时使用浅层和深层的特征提取,得到多尺度特征图,深层特征可以有效地保持检测精度不下降,浅层特征可以有效地提高小目标检测任务的精度。通过剪枝算法对模型进行压缩,将训练好的模型进行稀疏训练,把一些不重要的卷积核通道删除掉,对剪枝后的模型微调,保持模型文件中参数的平衡,同时保持检测精度。实验结果表明,通过提取多尺度特征图的方法模型准确率提高了2.3%,通过剪枝算法对模型压缩,使模型的权重大小减小了70%,模型的检测时间节省了90%。由此建立了鲁棒性更强的轻量级交通标志检测模型,可以部署在移动端嵌入式设备上,不再占用庞大的GPU计算资源即可提高检测效率。 展开更多
关键词 卷积神经网络 交通标志 小目标检测 多尺度特征图 模型压缩
下载PDF
多尺度特征提取和多级别特征融合的显著性目标检测方法 被引量:7
4
作者 黎玲利 孟令兵 李金宝 《工程科学与技术》 EI CAS CSCD 北大核心 2021年第1期170-177,共8页
显著性目标检测已经被广泛应用到图像检索、图像分割、行人重识别等领域。目前主流的显著性目标检测方法通常采用短连接加权的方式融合多级别特征信息,这种方式无法精准有效地控制信息流的传递。而且,现有的检测方法通常采用单一的特征... 显著性目标检测已经被广泛应用到图像检索、图像分割、行人重识别等领域。目前主流的显著性目标检测方法通常采用短连接加权的方式融合多级别特征信息,这种方式无法精准有效地控制信息流的传递。而且,现有的检测方法通常采用单一的特征检测,导致显著性目标区域与背景的边界不连续、易模糊。因此,本文提出一种多尺度特征提取和多级别特征融合的显著性目标检测方法。首先,利用不同扩张率的空洞卷积获取多尺度的上下文信息,弥补单一特征检测带来的不足。其次,提出一个多级别特征融合模块,该模块有效地利用浅层特征信息、深层特征信息和全局上下文特征信息之间的分布特性进行融合,不仅可以抑制噪声的传递,而且可以更有效地恢复显著性目标的空间细节结构信息。同时构建一个简洁的注意力模块,该模块有效保留特征图融合后的通道信息。本文对综合指标、平均绝对误差、结构化度量、精确率-召回率曲线和F-measure曲线进行了实验评估,在5个公开的数据集上进行的实验结果表明:相比于其他13种主流的检测方法,本文方法在不同的评估指标上均有明显的提升,在4个数据集上的综合指标和结构化度量指标均超过其他方法;并且,本文方法的可视化检测的显著图边缘轮廓连续性更好,空间结构细节信息更清晰。 展开更多
关键词 显著性检测 多尺度特征提取 多级别特征融合 显著图 深度学习
下载PDF
基于U-Net的多尺度低照度图像增强网络 被引量:6
5
作者 徐超越 余映 +2 位作者 何鹏浩 李淼 马玉辉 《计算机工程》 CAS CSCD 北大核心 2022年第8期215-223,共9页
低照度是夜晚拍摄时常见的一种现象,不充分的光照会使图像细节损失严重,降低图像视觉质量。针对现有低照度图像增强方法对不同尺度特征的感知和表达能力存在不足的问题,提出一种基于U-Net的多尺度低照度图像增强网络(MSU-LIIEN)。采用... 低照度是夜晚拍摄时常见的一种现象,不充分的光照会使图像细节损失严重,降低图像视觉质量。针对现有低照度图像增强方法对不同尺度特征的感知和表达能力存在不足的问题,提出一种基于U-Net的多尺度低照度图像增强网络(MSU-LIIEN)。采用特征金字塔作为基本处理框架,实现对低照度图像的特征提取。在特征金字塔构建的3个分支结构中均使用U-Net作为骨干网,对提取到的浅层图像特征进行编码与解码操作,同时引入结构细节残差融合块以增强网络模型提取和表征低照度图像特征信息的能力。在此基础上,对提取到的特征信息逐层融合,恢复正常光照图像。实验结果表明,MSU-LIIEN在LOL-datasets和Brighting Train数据集中相比于性能排名第二的KinD模型,平均峰值信噪比分别提高16.21%和46.67%,且在主观视野感受和客观评价指标方面均优于所有对比的经典模型,不但能有效提升低照度图像的整体亮度,而且能很好地保持图像中的细节信息和清晰的物体边缘轮廓,使增强后的图像整体画面真实自然。 展开更多
关键词 低照度图像增强 深度学习 U-Net网络 多尺度特征图 感受野
下载PDF
融合多尺度特征的轻量级人脸检测算法 被引量:5
6
作者 王建 宋晓宁 《模式识别与人工智能》 EI CSCD 北大核心 2022年第6期507-515,共9页
受到移动设备计算能力和存储资源受限的局限,设计高效、高精度的人脸检测器是一个开放性的挑战.因此,文中提出融合多尺度特征的轻量级人脸检测算法(Lightweight Face Detection Algorithm with Multi-scale Feature Fusion,LFDMF),摒弃... 受到移动设备计算能力和存储资源受限的局限,设计高效、高精度的人脸检测器是一个开放性的挑战.因此,文中提出融合多尺度特征的轻量级人脸检测算法(Lightweight Face Detection Algorithm with Multi-scale Feature Fusion,LFDMF),摒弃被视为人脸检测核心组件的多级检测结构.首先,利用现有的轻量级主干特征提取网络编码输入图像.然后,利用提出的颈部网络扩张特征图感受野,并将含有不同感受野的多尺度信息融至单级特征图中.最后,利用提出的多任务敏感检测头对该单级特征图进行人脸分类、回归和关键点检测.相比分而治之的人脸检测器,LFDMF精度更高、计算量更少.LFDMF按模型计算量高低可构建3个不同大小的网络,大模型LFDMF-L在Wider Face数据集上性能较优,中等模型LFDMF-M和小模型LFDMF-S以极低的模型参数量和计算量实现可观性能. 展开更多
关键词 人脸检测 多尺度特征 单级特征图 多任务敏感检测头
下载PDF
Abnormal Traffic Detection for Internet of Things Based on an Improved Residual Network
7
作者 Tingting Su Jia Wang +2 位作者 Wei Hu Gaoqiang Dong Jeon Gwanggil 《Computers, Materials & Continua》 SCIE EI 2024年第6期4433-4448,共16页
Along with the progression of Internet of Things(IoT)technology,network terminals are becoming continuously more intelligent.IoT has been widely applied in various scenarios,including urban infrastructure,transportati... Along with the progression of Internet of Things(IoT)technology,network terminals are becoming continuously more intelligent.IoT has been widely applied in various scenarios,including urban infrastructure,transportation,industry,personal life,and other socio-economic fields.The introduction of deep learning has brought new security challenges,like an increment in abnormal traffic,which threatens network security.Insufficient feature extraction leads to less accurate classification results.In abnormal traffic detection,the data of network traffic is high-dimensional and complex.This data not only increases the computational burden of model training but also makes information extraction more difficult.To address these issues,this paper proposes an MD-MRD-ResNeXt model for abnormal network traffic detection.To fully utilize the multi-scale information in network traffic,a Multi-scale Dilated feature extraction(MD)block is introduced.This module can effectively understand and process information at various scales and uses dilated convolution technology to significantly broaden the model’s receptive field.The proposed Max-feature-map Residual with Dual-channel pooling(MRD)block integrates the maximum feature map with the residual block.This module ensures the model focuses on key information,thereby optimizing computational efficiency and reducing unnecessary information redundancy.Experimental results show that compared to the latest methods,the proposed abnormal traffic detection model improves accuracy by about 2%. 展开更多
关键词 Abnormal network traffic deep learning residual network multi-scale feature extraction max-feature-map
下载PDF
一种改进的RefineDet多尺度人脸检测方法 被引量:5
8
作者 孙贵华 陈淑荣 《电子技术应用》 2019年第8期34-39,共6页
针对车站、商场等大型场所中客流量大、背景复杂等原因导致多尺度人脸检测精度低的问题,建立了一种基于RefineDet多层特征图融合的多尺度人脸检测方法。首先利用第一级网络进行特征提取并在不同尺度的特征图上粗略预估人脸位置;然后在... 针对车站、商场等大型场所中客流量大、背景复杂等原因导致多尺度人脸检测精度低的问题,建立了一种基于RefineDet多层特征图融合的多尺度人脸检测方法。首先利用第一级网络进行特征提取并在不同尺度的特征图上粗略预估人脸位置;然后在第二级中通过特征金字塔网络将低层特征与高层特征融合,进一步增强小尺寸人脸的语义信息;最后,通过置信度和焦点损失函数对检测框进行二次抑制,达到边框的精确回归。实验中将人脸候选区域的宽高比只设置为1:1,以此来降低运算量并提高人脸检测精度。在WiderFace数据集上的实验结果表明,该方法能有效检测不同尺度的人脸,在Easy、Medium、Hard3个子数据集上测试结果分别为93.4%、92%、84.4%的MAP,尤其对小尺寸人脸的检测精度有明显提高。 展开更多
关键词 多尺度 人脸检测 特征图融合 RefineDet 特征金字塔网络 焦点损失函数
下载PDF
基于增强卷积神经网络的尺度不变人脸检测方法 被引量:4
9
作者 李保华 王海星 《红外与激光工程》 EI CSCD 北大核心 2022年第7期481-488,共8页
针对非约束场景下小尺寸人脸检测困难的问题,提出了一种基于增强卷积神经网络的尺度不变人脸检测方法。首先,在SSD基础检测网络的两个浅层特征图上,通过协调聚合当前层特征图和前后两层特征图的特征信息,对当前层特征图的鉴别性和稳健... 针对非约束场景下小尺寸人脸检测困难的问题,提出了一种基于增强卷积神经网络的尺度不变人脸检测方法。首先,在SSD基础检测网络的两个浅层特征图上,通过协调聚合当前层特征图和前后两层特征图的特征信息,对当前层特征图的鉴别性和稳健性进行增强。然后,对两个增强特征图进行负样本筛选,通过增加分类的难度来降低由小尺寸锚框引起的人脸检测假正率上升。最后,为原始特征图和增强特征图设置了两种基于锚框尺寸的损失函数,并通过加权求和的方式对其进行融合。在FDDB和WIDER FACE数据集上的测试结果表明,文中所提方法比目前主流人脸检测方法具有更高的检测精度。 展开更多
关键词 多尺度人脸检测 卷积神经网络 特征图增强 负样本筛选
下载PDF
基于高分辨率卷积神经网络的场景文本检测模型 被引量:4
10
作者 陈淼妙 续晋华 《计算机应用与软件》 北大核心 2020年第10期138-144,共7页
卷积神经网络中常用的降采样在增大感受野的同时,减小了特征图的空间分辨率,导致大尺度文本在网络高层特征图中边界模糊,小尺度文本直接丢失。针对这种情况,设计一个主干网络,使其高层特征图具有较高的空间分辨率,用以提高模型对大尺度... 卷积神经网络中常用的降采样在增大感受野的同时,减小了特征图的空间分辨率,导致大尺度文本在网络高层特征图中边界模糊,小尺度文本直接丢失。针对这种情况,设计一个主干网络,使其高层特征图具有较高的空间分辨率,用以提高模型对大尺度文本的定位能力和小尺度文本的分类能力,减少对背景误检的情况,从而提高检测的召回率和准确率。实验结果表明,采用该主干网络可以有效提升模型对多尺度文本的检测能力,F值在ICDAR2015数据集上达到81.89%。 展开更多
关键词 场景文本检测 多尺度 卷积神经网络 特征融合 特征图分辨率
下载PDF
一种改进的基于SSD模型的多尺度人脸检测算法 被引量:4
11
作者 方帅 李永毅 +2 位作者 刘晓欣 高尚 范迪 《信息技术与信息化》 2019年第2期39-42,共4页
目前基于单一卷积神经网络(SSD)的人脸检测模型在解决不同尺度的人脸检测问题时,存在小尺度人脸检测准确率不高的问题。为此,本文提出一种改进的基于SSD模型的多尺度人脸检测方法。该方法采用特征密集连接策略,加强基础网络中不同卷积... 目前基于单一卷积神经网络(SSD)的人脸检测模型在解决不同尺度的人脸检测问题时,存在小尺度人脸检测准确率不高的问题。为此,本文提出一种改进的基于SSD模型的多尺度人脸检测方法。该方法采用特征密集连接策略,加强基础网络中不同卷积层之间的信息流动性,从而提升基础网络的特征描述能力;并通过在浅层特征中引入上下文信息,提高小尺度人脸的检测准确性。在WIDER FACE数据集上进行实验,结果表明,本文方法可较好的检测出多尺度人脸。 展开更多
关键词 多尺度人脸检测 特征密集连接策略 上下文信息 特征融合 SSD模型
下载PDF
结合多尺度及密集特征图融合的阴影检测方法 被引量:4
12
作者 张世辉 张笑维 +3 位作者 李贺 张笑笑 牛景春 陈琦 《计量学报》 CSCD 北大核心 2021年第5期570-576,共7页
为了提高图像中阴影检测的准确性,提出一种利用深度神经网络实现阴影检测的方法。首先,构造了一种密集特征图融合结构,将不同卷积层产生的特征图进行融合;其次,针对图像中阴影的多种尺度特征,设计了一种串并联结合的扩张卷积结构提取图... 为了提高图像中阴影检测的准确性,提出一种利用深度神经网络实现阴影检测的方法。首先,构造了一种密集特征图融合结构,将不同卷积层产生的特征图进行融合;其次,针对图像中阴影的多种尺度特征,设计了一种串并联结合的扩张卷积结构提取图像中阴影多尺度特征;最后,将串并联结合的扩张卷积结构和密集特征图融合结构进行结合,设计出一种端到端的Dilated Dense Fusion-Unet网络实现阴影检测功能。实验结果表明,所提方法在SBU和UCF阴影检测数据集上的阴影检测结果及量化评估均优于已有代表性的阴影检测方法,在2个数据集上的准确率分别提高5.8%和6.5%,平衡误差率分别降低2.2%和0.5%。 展开更多
关键词 计量学 图像处理 阴影检测 端到端 多尺度特征 扩张卷积 密集特征图
下载PDF
一种结合多尺度特征图和环型关系推理的场景图生成模型 被引量:4
13
作者 庄志刚 许青林 《计算机科学》 CSCD 北大核心 2020年第4期136-141,共6页
场景图为描述图像内容的结构图(Graph),其在生成过程中存在两个问题:1)二步式场景图生成方法造成有益信息流失,使得任务难度提高;2)视觉关系长尾分布使得模型发生过拟合、关系推理错误率上升。针对这两个问题,文中提出结合多尺度特征图... 场景图为描述图像内容的结构图(Graph),其在生成过程中存在两个问题:1)二步式场景图生成方法造成有益信息流失,使得任务难度提高;2)视觉关系长尾分布使得模型发生过拟合、关系推理错误率上升。针对这两个问题,文中提出结合多尺度特征图和环型关系推理的场景图生成模型SGiF(Scene Graph in Features)。首先,计算多尺度特征图上的每一特征点存在视觉关系的可能性,并将存在可能性高的特征点特征提取出来;然后,从被提取出的特征中解码得到主宾组合,根据解码结果的类别差异,对结果进行去重,以此得到场景图结构;最后,根据场景图结构检测包含目标关系边在内的环路,将环路上的其他边作为计算调整因子的输入,以该因子调整原关系推理结果,并最终完成场景图的生成。实验设置SGGen和PredCls作为验证项,在大型场景图生成数据集VG(Visual Genome)子集上的实验结果表明,通过使用多尺度特征图,相比二步式基线,SGiF的视觉关系检测命中率提升了7.1%,且通过使用环型关系推理,相比非环型关系推理基线,SGiF的关系推理命中率提升了2.18%,从而证明了SGiF的有效性。 展开更多
关键词 场景图生成 多尺度特征图 环型关系推理 卷积神经网络 图像理解
下载PDF
铁路接触网主要部件检测方法 被引量:2
14
作者 闵锋 侯泽铭 《计算机工程与设计》 北大核心 2022年第10期2911-2917,共7页
为解决人工查看4C装置拍摄的接触网图片速度慢、效率低的问题,提出一种基于改进YOLOv4-tiny的铁路接触网主要部件的检测方法。针对接触网图片分辨率大、部件小的情况,采用预处理方法裁减掉冗余黑色背景,提高部件的相对大小;增加一个对... 为解决人工查看4C装置拍摄的接触网图片速度慢、效率低的问题,提出一种基于改进YOLOv4-tiny的铁路接触网主要部件的检测方法。针对接触网图片分辨率大、部件小的情况,采用预处理方法裁减掉冗余黑色背景,提高部件的相对大小;增加一个对于小目标友好的下采样8倍的输出特征图;为避免一些小部件在主干网络提取特征时的语义信息丢失和占比减少问题,将原网络残差结构中的3*3卷积改进为并列的1*1、3*3和5*5卷积。实验结果表明,改进后的算法在准确率上相比YOLOv4-tiny提高了32.11%,达到96.56%。 展开更多
关键词 铁路接触网 小部件 多尺度特征图 目标检测 图像处理
下载PDF
结合二阶注意力机制的多尺度人体姿态估计 被引量:1
15
作者 张云绚 董绵绵 +4 位作者 王鹏 李晓艳 吕志刚 邸若海 毋宁 《科学技术与工程》 北大核心 2022年第32期14321-14327,共7页
为解决人体姿态估计任务中存在的不同视角下人体实例尺度变化、遮挡问题导致的人体关键点定位不准确问题,提出融入二阶注意力机制的多尺度人体姿态估计网络模型GOS-HRNet。首先,在特征提取阶段为了获得高质量的特征图,通过在多分辨率网... 为解决人体姿态估计任务中存在的不同视角下人体实例尺度变化、遮挡问题导致的人体关键点定位不准确问题,提出融入二阶注意力机制的多尺度人体姿态估计网络模型GOS-HRNet。首先,在特征提取阶段为了获得高质量的特征图,通过在多分辨率网络结构中使用Octave卷积,保留更多的图像空间特征信息以提高关键点定位准确率;然后,为有效的利用图像上下文信息,融入二阶注意力模块使网络能更好地学习各分辨率表征的空间信息;最后,为了应对尺度变换对关键点定位的影响采用尺度增强训练方法,提高模型对尺度变化的鲁棒性。所提模型在MS COCO 2017数据集上进行实验,结果表明:所提出的GOS-HRNet模型平均检测精度比HRNet模型提升了2.2%,能够更加准确地利用上下文信息、丰富空间特征信息以提高对关键点定位的准确性。 展开更多
关键词 多尺度 高质量特征图 姿态估计 注意力机制
下载PDF
基于上下文特征重聚合网络的人群计数 被引量:1
16
作者 郝晓亮 杨倩倩 +2 位作者 夏殷锋 彭思凡 殷保群 《信息技术与网络安全》 2021年第7期59-65,共7页
针对计数问题中人群目标尺度的变化问题,提出了一种基于上下文特征重聚合的计数算法。将高层网络提取的语义信息与底层网络提取的人群尺度细节信息相结合,旨在利用浅层网络中提取的信息向深层网络提取的特征中融入不同尺度的行人目标特... 针对计数问题中人群目标尺度的变化问题,提出了一种基于上下文特征重聚合的计数算法。将高层网络提取的语义信息与底层网络提取的人群尺度细节信息相结合,旨在利用浅层网络中提取的信息向深层网络提取的特征中融入不同尺度的行人目标特征,从而融合多种尺度的人群特征回归出高质量的人群密度图。此外,在ShanghaiTech、UCF_CC_50以及UCF_QNRF三个数据集进行算法的性能验证,并通过结构实验验证本文结构的有效性。 展开更多
关键词 人群计数 上下文特征增强 多尺度特征融合 密度图
下载PDF
Bayesian Saliency Detection for RGB-D Images 被引量:1
17
作者 Songtao Wang Zhen Zhou +1 位作者 Hanbing Qu Bin Li 《自动化学报》 EI CSCD 北大核心 2017年第10期1810-1828,共19页
关键词 贝叶斯定理 检测模型 显著性 图像 期望最大化算法 分布计算 特征映射 高斯分布
下载PDF
X光安检图像多尺度违禁品检测 被引量:24
18
作者 张友康 苏志刚 +1 位作者 张海刚 杨金锋 《信号处理》 CSCD 北大核心 2020年第7期1096-1106,共11页
安检是保障人民生命财产安全的第一道防线,智能安检是安检行业未来发展的必然趋势。X光安检图像存在背景复杂、违禁品尺度多样以及相互遮挡现象,导致传统的目标检测算法无法获得满意的效果。本文在一阶段目标检测网络SSD框架的基础上,... 安检是保障人民生命财产安全的第一道防线,智能安检是安检行业未来发展的必然趋势。X光安检图像存在背景复杂、违禁品尺度多样以及相互遮挡现象,导致传统的目标检测算法无法获得满意的效果。本文在一阶段目标检测网络SSD框架的基础上,提出了适用于X光安检图像多尺度违禁品检测网络——非对称卷积多视野神经网络ACMNet(Asymmetrical Convolution Multi-View Neural Network)。检测网络增加了三个模块:小卷积非对称模块(Asymmetrical Tiny Convolution Module,ATM)、空洞多视野卷积模块(Dilated Convolution Multi-View Module,DCM)、多尺度特征图融合策略(Fusion strategy of multi-scale feature map,MF)。ATM学习到的细节特征有助于小尺度违禁品的识别;DCM通过提供局部与全局之间的上下文特征信息来解决遮挡问题;MF则是通过融合高、低层特征图以提高模型在背景干扰情况下违禁品的检测精度。在仿真实验中,采用X光安检领域公开的数据集与自建的数据集,ACMNet在精确度上取得了令人满意的效果。 展开更多
关键词 X光安检图像 违禁品检测 空洞卷积 非对称卷积 多尺度特征图融合
下载PDF
基于深度帧差卷积神经网络的运动目标检测方法研究 被引量:15
19
作者 欧先锋 晏鹏程 +4 位作者 王汉谱 涂兵 何伟 张国云 徐智 《电子学报》 EI CAS CSCD 北大核心 2020年第12期2384-2393,共10页
复杂场景中的运动目标检测是计算机视觉领域的重要问题,其检测准确度仍然是一大挑战.本文提出并设计了一种用于复杂场景中运动目标检测的深度帧差卷积神经网络(Deep Difference Convolutional Neural Network,DFDCNN).DFDCNN由Differenc... 复杂场景中的运动目标检测是计算机视觉领域的重要问题,其检测准确度仍然是一大挑战.本文提出并设计了一种用于复杂场景中运动目标检测的深度帧差卷积神经网络(Deep Difference Convolutional Neural Network,DFDCNN).DFDCNN由DifferenceNet和AppearanceNet组成,不需要后处理就可以预测分割前景像素.DifferenceNet具有孪生Encoder-Decoder结构,用于学习两个连续帧之间的变化,从输入(t帧和t+1帧)中获取时序信息;AppearanceNet用于从输入(t帧)中提取空间信息,并与时序信息融合;同时,通过多尺度特征图融合和逐步上采样来保留多尺度空间信息,以提高网络对小目标的敏感性.在公开标准数据集CDnet2014和I2R上的实验结果表明:DFDCNN不仅在动态背景、光照变化和阴影存在的复杂场景中具有更好的检测性能,而且在小目标存在的场景中也具有较好的检测效果. 展开更多
关键词 运动目标检测 复杂场景 深度帧差卷积神经网络 时序信息 空间信息 多尺度特征图融合
下载PDF
基于特征图集合的遥感影像深度学习地物分类研究 被引量:2
20
作者 楚博策 高峰 +4 位作者 帅通 王士成 陈杰 陈金勇 于卫东 《无线电工程》 北大核心 2022年第4期630-637,共8页
针对高分辨率遥感影像复杂地物分类的问题,提出了人工特征工程与深度神经网络相结合的地物分类方法。通过纹理与结构等人工设计特征提取构建多尺度特征图,采用特征图和原始图像合并构建的高维图集合作为网络输入,最大程度地丰富了输入... 针对高分辨率遥感影像复杂地物分类的问题,提出了人工特征工程与深度神经网络相结合的地物分类方法。通过纹理与结构等人工设计特征提取构建多尺度特征图,采用特征图和原始图像合并构建的高维图集合作为网络输入,最大程度地丰富了输入信息量,同时增强了纹理、尺度等有利特征在网络训练过程中的主导作用。根据全卷积网络端到端的像素级分类思想,借鉴并改进DeepLab v3网络的结构设计,实现了一站式的遥感地物分类。实验结果表明,相对于采用原始图像直接作为网络输入,多尺度特征图与原始图结合的方法可以有效地凸显地物中纹理与结构的描述能力,较好地提升地物分类准确度;同时相对于传统神经网络进行图片分类的方法,设计的基于多尺度特征图集合的方法在遥感地物分类任务中具有更好的抗干扰性与准确性。 展开更多
关键词 高分辨率 遥感 地物分类 深度学习 语义分割 多尺度特征图 全卷积网络
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部