期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于多尺度卷积神经网络的手机表面缺陷识别方法 被引量:1
1
作者 韩红桂 甄晓玲 +1 位作者 李方昱 杜永萍 《北京工业大学学报》 CAS CSCD 北大核心 2023年第11期1150-1158,共9页
针对手机表面缺陷难以精确识别的问题,提出一种兼具Soble算子、逻辑损失函数(logistic loss function,LLF)和多尺度卷积神经网络(multi-scale convolutional neural networks,MSCNN)手机表面缺陷识别方法SL-MSCNN。首先,构建了一种基于S... 针对手机表面缺陷难以精确识别的问题,提出一种兼具Soble算子、逻辑损失函数(logistic loss function,LLF)和多尺度卷积神经网络(multi-scale convolutional neural networks,MSCNN)手机表面缺陷识别方法SL-MSCNN。首先,构建了一种基于Sobel算子的邻域特征增强方法,排除了图像中光照、阴影等无关因素的干扰;其次,设计了一种基于MSCNN的缺陷识别方法,通过获得手机表面图像的多尺度信息,提高了手机表面缺陷的识别精度,同时,引入了LLF,通过降低梯度消失发生的概率加快训练的检测速度。实验结果表明:与其他手机表面缺陷识别方法相比,SL-MSCNN在准确率和效率方面具有更好的使用价值。 展开更多
关键词 手机表面缺陷 邻域特征增强 识别方法 识别精度 SOBEL算子 多尺度卷积神经网络(multi-scale convolutional neural networks mscnn) 逻辑损失函数(logistic loss function LLF)
下载PDF
基于MSCNNSA-BiGRU的变工况风电机组滚动轴承故障诊断研究 被引量:12
2
作者 安文杰 陈长征 +2 位作者 田淼 金毓林 孙鲜明 《机电工程》 CAS 北大核心 2022年第8期1096-1103,共8页
风电机组滚动轴承运行工况复杂多变,存在故障特征区域尺寸不一致、故障难提取、难辨别的问题,为此,提出了一种基于多尺度卷积神经网络(MSCNN)、自注意力(SA)机制与双向门控循环单元(BiGRU)的变工况条件下风电机组滚动轴承故障诊断方法(M... 风电机组滚动轴承运行工况复杂多变,存在故障特征区域尺寸不一致、故障难提取、难辨别的问题,为此,提出了一种基于多尺度卷积神经网络(MSCNN)、自注意力(SA)机制与双向门控循环单元(BiGRU)的变工况条件下风电机组滚动轴承故障诊断方法(MSCNNSA-BiGRU)。首先,采用MSCNN提取了轴承原始振动信号的多尺度特征信息;然后,BiGRU结构挖掘原始振动信号的历史与未来信息,更全面地提取了其数据时序特征信息,同时引入self-attention来重点关注故障特征,提高了模型的故障诊断精度;最后,将特征信息融合成了一个特征向量,输入到SoftMax层,实现了对故障的分类;并将该方法应用于实际风电机组滚动轴承故障诊断中。研究结果表明:变工况背景下轴承故障识别准确率为92.7%,与经典的MSCNN网络相比,其故障识别的平均准确率提高8.13%;该方法直接从原始振动信号自适应地提取多尺度的时序特征,并将其进行融合,实现了“端到端”的滚动轴承故障诊断,省去了人工特征提取过程,提高了模型的泛化能力和鲁棒性,对实际工程风电机组滚动轴承故障诊断研究应用具有一定价值。 展开更多
关键词 机械运行与维修 多尺度卷积神经网络 自注意力机制 双向门控循环单元 特征向量 故障分类
下载PDF
基于BFD和MSCNN的风电滚动轴承智能故障诊断 被引量:6
3
作者 邓敏强 邓艾东 +2 位作者 朱静 史曜炜 马天霆 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第3期521-528,共8页
针对变工况下风电滚动轴承的健康状态评估问题,提出了一种基于带宽傅里叶分解(BFD)和多尺度卷积神经网络(MSCNN)的智能故障诊断方法.首先,通过BFD算法将原始振动信号分解为一系列带宽模态函数(BMF);然后,通过希尔伯特阶次变换(HOT)计算... 针对变工况下风电滚动轴承的健康状态评估问题,提出了一种基于带宽傅里叶分解(BFD)和多尺度卷积神经网络(MSCNN)的智能故障诊断方法.首先,通过BFD算法将原始振动信号分解为一系列带宽模态函数(BMF);然后,通过希尔伯特阶次变换(HOT)计算各BMF的包络阶次谱,并根据特征阶次比筛选出分解结果中包含故障信息最多的有效分量.最后,通过MSCNN学习有效分量的包络阶次谱与故障类别之间的映射关系以实现滚动轴承健康状态的自动识别.实验结果表明,所提方法采用BFD分解结果的包络阶次谱作为故障识别的特征量,能有效提高模型在不同工况下的泛化能力,其测试准确率达到97%以上,可应用于变工况条件下风电滚动轴承的智能故障诊断. 展开更多
关键词 风电 滚动轴承 故障诊断 带宽傅里叶分解 多尺度卷积神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部