Efficient multi-resonance thermally activated delayed fluorescence(MR-TADF)materials hold significant potential for applications in organic light-emitting diodes(OLEDs)and ultra-high-definition displays.However,the st...Efficient multi-resonance thermally activated delayed fluorescence(MR-TADF)materials hold significant potential for applications in organic light-emitting diodes(OLEDs)and ultra-high-definition displays.However,the stringent synthesis conditions and low yields typically associated with these materials pose substantial challenges for their practical applications.In this study,we introduce an innovative strategy that involves peripheral modification with sulfur and selenium atoms for two materials,CFDBNS and CFDBNSe.This approach enables a directed one-shot borylation process,achieving synthesis yields of 66%and 25%,respectively,while also enhancing reverse intersystem crossing rates.Both emitters exhibit ultra-narrowband sky-blue emissions centered around 474 nm,with full width at half maximum(FWHM)values as narrow as 19 nm in dilute toluene solutions,along with high photoluminescence quantum yields of 98%and 99%in doped films,respectively.The OLEDs based on CFDBNS and CFDBNSe display sky-blue emissions with peaks at 476 and 477 nm and exceptionally slender FWHM values of 23 nm.Furthermore,the devices demonstrate remarkable performances,achieving maximum external quantum efficiencies of 24.1%and 27.2%.This work presents a novel and straightforward approach for the incorporation of heavy atoms,facilitating the rapid construction of efficient MR-TADF materials for OLEDs.展开更多
Boron−nitrogen doped multiple resonance(BN-MR)emitters,characterized by B−N covalent bonds,offer distinctive advantages as pivotal building blocks for facile access to novel MR emitters featuring narrowband spectra an...Boron−nitrogen doped multiple resonance(BN-MR)emitters,characterized by B−N covalent bonds,offer distinctive advantages as pivotal building blocks for facile access to novel MR emitters featuring narrowband spectra and high efficiency.However,there remains a scarcity of exploration concerning synthetic methods and structural derivations to expand the library of novel BN-MR emitters.Herein,we present the synthesis of a BN-MR emitter,tCz[B−N]N,through a one-pot borylation reaction directed by the amine group,achieving an impressive yield of 94%.The emitter is decorated by incorporating two 3,6-di-tbutylcarbazole(tCz)units into a B−N covalent bond doped BN-MR parent molecule via para-C−π−D and para-N−π−D conjugations.This peripheral decoration strategy enhances the reverse intersystem crossing process and shifts the emission band towards the pure green region,peaking at 526 nm with a narrowband full-width at half maximum(FWHM)of 41 nm.Consequently,organic light emitting diodes(OLEDs)employing this emitter achieved a maximum external quantum efficiency(EQEmax)value of 27.7%,with minimal efficiency roll-off.Even at a practical luminance of 1000 cd·m^(−2),the device maintains a high EQE value of 24.6%.展开更多
In this study,the multi-peak terahertz metamaterials sensors are designed and fabricated,whose structures are the asymmetrical single split ring(SSR)and three split rings(TSR).The resonant formation and sensing mechan...In this study,the multi-peak terahertz metamaterials sensors are designed and fabricated,whose structures are the asymmetrical single split ring(SSR)and three split rings(TSR).The resonant formation and sensing mechanism of the two structures are investigated by using the finite-difference time-domain(FDTD)method.Vitamin B6(VB6)and its reactants with bovine serum protein(BSA)are tested as the medium,and the sensing experiments of the SSR and TSR are carried out.The experimental and simulation results indicate the consistent law,which is the sensitivity of the resonance in the transverse magnetic(TM)mode is much greater than that in the transverse electric(TE)mode.According to the weighted average method and the law for unequal precision measuring,the quality factor of the resonance is used as the weighting coefficient to calculate the comprehensive evaluation parameter(CEP)of the multi-peak metamaterials sensors in the TE and TM modes based on the experimental data.When the CEP and frequency shifts are as the evaluation parameter in experiments,the law’s variation of the CEP is consistent with that of the frequency shift,indicating that it is feasible to characterize the sensing characteristics of metamaterials with the CEP,which presents simplified characteristics of multi-peak metamaterials at different polarization modes.The method implies that the different influencing factors may be integrated into the CEP with the idea of weight,which promotes the practical application of the metamaterials sensor.The revelation of the sensing law also provides a method for the design of the terahertz metamaterials sensor with the high sensitivity.展开更多
By investigating a stochastic model for intracellular calcium oscillations proposed by Hfer,we have analyzed the transmission behavior of calcium signaling in a one-dimensional two-way coupled hepatocytes system.It ...By investigating a stochastic model for intracellular calcium oscillations proposed by Hfer,we have analyzed the transmission behavior of calcium signaling in a one-dimensional two-way coupled hepatocytes system.It is shown that when the first cell is subjected to the external noise,the output signal-to-noise ratio(SNR) in the cell exhibits two maxima as a function of external noise intensity,indicating the occurrence of stochastic bi-resonance(SBR).It is more important that when cells are coupled together,the resonant behavior in the 1st cell propagates along the chain with different features through the coupling effect.The cells whose locations are comparatively close to or far from the 1st cell can show SBR,while the cells located in the middle position can display stochastic multi-resonance(SMR).Fur-thermore,the number of cells that can show SMR increases with coupling strength enhancing.These results indicate that the cells system may make an effective choice in response to external signaling induced by noise,through the mechanism of SMR by adjusting coupling strength.展开更多
Due to narrowband emission and high quantum efficiencies,polycyclic aromatic heterocycles with multi-resonance thermally activated delayed fluorescence(MR-TADF)properties have recently gained considerable attention in...Due to narrowband emission and high quantum efficiencies,polycyclic aromatic heterocycles with multi-resonance thermally activated delayed fluorescence(MR-TADF)properties have recently gained considerable attention in the organic optoelectronic field.Albeit their great promise in the full visible region covering from blue to red,MR-TADF emitters with ultraviolet emission have been rarely reported.Through locking the two ortho-positions of a triphenylamine core by sulfone groups,a simple polycyclic aromatic heterocycle,BTPT,was facilely constructed,exhibiting 368 nm ultraviolet emission with a narrow full width at half maximum(FWHM)of 33 nm.Its neat film exhibited distinct TADF property with a main emission peak at 388 nm.Noteworthily,the enantiomeric crystals of BTPT not only demonstrated significant circularly polarized luminescence(CPL)with large luminescence dissymmetry factor in the 10^(-3) order but also displayed obvious room temperature phosphorescence(RTP).The relationship between this innovative helical unit and unique photophysical properties,including ultraviolet MR-TADF,CPL,and RTP,was reasonably revealed.展开更多
With excellent color purity(full-width half maximum(FWHM)<40 nm)and high quantum yield,multiresonance(MR)molecules can harvest both singlet and triplet excitons for highly efficient narrowband organic light-emittin...With excellent color purity(full-width half maximum(FWHM)<40 nm)and high quantum yield,multiresonance(MR)molecules can harvest both singlet and triplet excitons for highly efficient narrowband organic light-emitting diodes(OLEDs)owing to their thermally activated delayed fluorescence(TADF)nature.However,the highly rigid molecular skeleton with the oppositely positioned bo ron and nitrogen in generating MR effects results in the intrinsic difficulties in the solution-processing of MR-OLEDs.Here,we demonstrate a facile strategy to increase the solubility,enhance the efficiencies and modulate emission color of MR-TADF molecules by extending aromatic rings and introducing tert-butyls into the MR backbone.Two MR-TADF emitters with smaller singlet-triplet splitting energies(ΔE~(ST))and larger oscillator strengths were prepared conveniently,and the solution-processed MR-OLEDs were fabricated for the first time,exhibiting efficient bluish-green electroluminescence with narrow FWHM of 32 nm and external quantum efficiency of 16.3%,which are even comparable to the state-of-the-art performances of the vacuum-evaporated devices.These results prove the feasibility of designing efficient solutionprocessible MR molecules,offering important clues in developing high-performance solution-processed MR-OLEDs with high efficiency and color purity.展开更多
A combined ME composite structure is made of several cylindrical layered composites in series or parallel connection.Due to the cylindrical structure,the combined structure does not need more space.The characteristics...A combined ME composite structure is made of several cylindrical layered composites in series or parallel connection.Due to the cylindrical structure,the combined structure does not need more space.The characteristics of multi-resonance frequencies have been studied.Each resonance frequency of the structure can be adjusted by changing the cylinder diameter of the corresponding cylindrical layered composites.The number of resonance frequencies increases as the number of cylindrical layered composites increases.The multi-resonance frequencies behavior makes these cylindrical layered composite structures suitable for applications in multifuctional devices with multi-frequencies operation.展开更多
基金supported by the National Natural Science Foundation of China(92256304,U23A20593)the Fundamental Research Funds for the Central Universities(020514380294)。
文摘Efficient multi-resonance thermally activated delayed fluorescence(MR-TADF)materials hold significant potential for applications in organic light-emitting diodes(OLEDs)and ultra-high-definition displays.However,the stringent synthesis conditions and low yields typically associated with these materials pose substantial challenges for their practical applications.In this study,we introduce an innovative strategy that involves peripheral modification with sulfur and selenium atoms for two materials,CFDBNS and CFDBNSe.This approach enables a directed one-shot borylation process,achieving synthesis yields of 66%and 25%,respectively,while also enhancing reverse intersystem crossing rates.Both emitters exhibit ultra-narrowband sky-blue emissions centered around 474 nm,with full width at half maximum(FWHM)values as narrow as 19 nm in dilute toluene solutions,along with high photoluminescence quantum yields of 98%and 99%in doped films,respectively.The OLEDs based on CFDBNS and CFDBNSe display sky-blue emissions with peaks at 476 and 477 nm and exceptionally slender FWHM values of 23 nm.Furthermore,the devices demonstrate remarkable performances,achieving maximum external quantum efficiencies of 24.1%and 27.2%.This work presents a novel and straightforward approach for the incorporation of heavy atoms,facilitating the rapid construction of efficient MR-TADF materials for OLEDs.
基金financial support from the National Natural Science Foundation of China(Nos.52303253 and 52273198)Yunnan Fundamental Research Project(No.202301BF070001-008)the Yunling Scholar Project of"Yunnan Revitalization Talent Support Program".
文摘Boron−nitrogen doped multiple resonance(BN-MR)emitters,characterized by B−N covalent bonds,offer distinctive advantages as pivotal building blocks for facile access to novel MR emitters featuring narrowband spectra and high efficiency.However,there remains a scarcity of exploration concerning synthetic methods and structural derivations to expand the library of novel BN-MR emitters.Herein,we present the synthesis of a BN-MR emitter,tCz[B−N]N,through a one-pot borylation reaction directed by the amine group,achieving an impressive yield of 94%.The emitter is decorated by incorporating two 3,6-di-tbutylcarbazole(tCz)units into a B−N covalent bond doped BN-MR parent molecule via para-C−π−D and para-N−π−D conjugations.This peripheral decoration strategy enhances the reverse intersystem crossing process and shifts the emission band towards the pure green region,peaking at 526 nm with a narrowband full-width at half maximum(FWHM)of 41 nm.Consequently,organic light emitting diodes(OLEDs)employing this emitter achieved a maximum external quantum efficiency(EQEmax)value of 27.7%,with minimal efficiency roll-off.Even at a practical luminance of 1000 cd·m^(−2),the device maintains a high EQE value of 24.6%.
基金The authors are grateful for the financial support from the National Natural Science Foundation of China(NSFC)(Grant Nos.62065005 and 62063003)the Natural Science Foundation of Guangxi(Grant Nos.2021GXNSFBA196081 and 2021AC19093)the Foundation from Guangxi Key Laboratory of Automatic Detection Technology and Instrument(Grant Nos.YQ20116,YQ21109,and YQ19103).
文摘In this study,the multi-peak terahertz metamaterials sensors are designed and fabricated,whose structures are the asymmetrical single split ring(SSR)and three split rings(TSR).The resonant formation and sensing mechanism of the two structures are investigated by using the finite-difference time-domain(FDTD)method.Vitamin B6(VB6)and its reactants with bovine serum protein(BSA)are tested as the medium,and the sensing experiments of the SSR and TSR are carried out.The experimental and simulation results indicate the consistent law,which is the sensitivity of the resonance in the transverse magnetic(TM)mode is much greater than that in the transverse electric(TE)mode.According to the weighted average method and the law for unequal precision measuring,the quality factor of the resonance is used as the weighting coefficient to calculate the comprehensive evaluation parameter(CEP)of the multi-peak metamaterials sensors in the TE and TM modes based on the experimental data.When the CEP and frequency shifts are as the evaluation parameter in experiments,the law’s variation of the CEP is consistent with that of the frequency shift,indicating that it is feasible to characterize the sensing characteristics of metamaterials with the CEP,which presents simplified characteristics of multi-peak metamaterials at different polarization modes.The method implies that the different influencing factors may be integrated into the CEP with the idea of weight,which promotes the practical application of the metamaterials sensor.The revelation of the sensing law also provides a method for the design of the terahertz metamaterials sensor with the high sensitivity.
基金the Research Fund of Anhui Normal University(Grant No.2006xzx09)the Educational Commission of Anhui Province of China(Grant No.KJ2007A079)the Program for Innovative Research Team in Anhui Normal University
文摘By investigating a stochastic model for intracellular calcium oscillations proposed by Hfer,we have analyzed the transmission behavior of calcium signaling in a one-dimensional two-way coupled hepatocytes system.It is shown that when the first cell is subjected to the external noise,the output signal-to-noise ratio(SNR) in the cell exhibits two maxima as a function of external noise intensity,indicating the occurrence of stochastic bi-resonance(SBR).It is more important that when cells are coupled together,the resonant behavior in the 1st cell propagates along the chain with different features through the coupling effect.The cells whose locations are comparatively close to or far from the 1st cell can show SBR,while the cells located in the middle position can display stochastic multi-resonance(SMR).Fur-thermore,the number of cells that can show SMR increases with coupling strength enhancing.These results indicate that the cells system may make an effective choice in response to external signaling induced by noise,through the mechanism of SMR by adjusting coupling strength.
基金supported by the National Natural Science Foundation of China(52022071,52130308,91833304)the Fundamental Research Funds for the Central Universities(2042021kf1060)Shenzhen Science and Technology Program(ZDSYS20210623091813040,JCYJ20190808151209557)。
文摘Due to narrowband emission and high quantum efficiencies,polycyclic aromatic heterocycles with multi-resonance thermally activated delayed fluorescence(MR-TADF)properties have recently gained considerable attention in the organic optoelectronic field.Albeit their great promise in the full visible region covering from blue to red,MR-TADF emitters with ultraviolet emission have been rarely reported.Through locking the two ortho-positions of a triphenylamine core by sulfone groups,a simple polycyclic aromatic heterocycle,BTPT,was facilely constructed,exhibiting 368 nm ultraviolet emission with a narrow full width at half maximum(FWHM)of 33 nm.Its neat film exhibited distinct TADF property with a main emission peak at 388 nm.Noteworthily,the enantiomeric crystals of BTPT not only demonstrated significant circularly polarized luminescence(CPL)with large luminescence dissymmetry factor in the 10^(-3) order but also displayed obvious room temperature phosphorescence(RTP).The relationship between this innovative helical unit and unique photophysical properties,including ultraviolet MR-TADF,CPL,and RTP,was reasonably revealed.
基金supported by the National Natural Science Foundation of China(Nos.21772095,91833306,51873159,91956107,61875090 and 21674049)1311 Talents Program of Nanjing University of Posts and Telecommunications(Dingshan),the Six Talent Plan(No.2016XCL050)+3 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD,No.YX030003)China Postdoctoral Science Foundation(No.2020M671460)Jiangsu Planned Projects for Postdoctoral Research Funds(No.20202137)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.46030CX17761)。
文摘With excellent color purity(full-width half maximum(FWHM)<40 nm)and high quantum yield,multiresonance(MR)molecules can harvest both singlet and triplet excitons for highly efficient narrowband organic light-emitting diodes(OLEDs)owing to their thermally activated delayed fluorescence(TADF)nature.However,the highly rigid molecular skeleton with the oppositely positioned bo ron and nitrogen in generating MR effects results in the intrinsic difficulties in the solution-processing of MR-OLEDs.Here,we demonstrate a facile strategy to increase the solubility,enhance the efficiencies and modulate emission color of MR-TADF molecules by extending aromatic rings and introducing tert-butyls into the MR backbone.Two MR-TADF emitters with smaller singlet-triplet splitting energies(ΔE~(ST))and larger oscillator strengths were prepared conveniently,and the solution-processed MR-OLEDs were fabricated for the first time,exhibiting efficient bluish-green electroluminescence with narrow FWHM of 32 nm and external quantum efficiency of 16.3%,which are even comparable to the state-of-the-art performances of the vacuum-evaporated devices.These results prove the feasibility of designing efficient solutionprocessible MR molecules,offering important clues in developing high-performance solution-processed MR-OLEDs with high efficiency and color purity.
基金supported by the National High Technology Research and Development Program of China(Grant No.2012AA030403)National Natural Science Foundation of China(Grant Nos.51032003,11274198,51102148,51221291)+2 种基金Shandong Natural Science Foundation(Grant No.ZR2010AM025)the China Postdoctoral Research Foundation(Grant No.2013M530042)the Research Fund for the Doctoral Program of Higher Education(Grant No.2010000612003)
文摘A combined ME composite structure is made of several cylindrical layered composites in series or parallel connection.Due to the cylindrical structure,the combined structure does not need more space.The characteristics of multi-resonance frequencies have been studied.Each resonance frequency of the structure can be adjusted by changing the cylinder diameter of the corresponding cylindrical layered composites.The number of resonance frequencies increases as the number of cylindrical layered composites increases.The multi-resonance frequencies behavior makes these cylindrical layered composite structures suitable for applications in multifuctional devices with multi-frequencies operation.