Polyamide/acrylonitrile-butadiene-styrene copolymer(PA/ABS) blends have drawn considerable attention from both academia and industry for their important applications in automotive and electronic areas. Due to poor mis...Polyamide/acrylonitrile-butadiene-styrene copolymer(PA/ABS) blends have drawn considerable attention from both academia and industry for their important applications in automotive and electronic areas. Due to poor miscibility of PA and ABS, developing an effective compatibilization strategy has been an urgent challenge to achieve prominent mechanical properties. In this study, we create a set of mechanically enhanced PA6/ABS blends using two multi-monomer melt-grafted compatibilizers, SEBSg-(MAH-co-St) and ABS-g-(MAH-co-St). The dispersed domain size is significantly decreased and meanwhile the unique "soft shell-encapsulating-hard core" structures form in the presence of compatibilizers. The optimum mechanical performances manifest an increase of 36% in tensile strength and an increase of 1300% in impact strength, compared with the neat PA6/ABS binary blend.展开更多
基金the National Natural Science Foundation of China (No. 51633003) for the financial support
文摘Polyamide/acrylonitrile-butadiene-styrene copolymer(PA/ABS) blends have drawn considerable attention from both academia and industry for their important applications in automotive and electronic areas. Due to poor miscibility of PA and ABS, developing an effective compatibilization strategy has been an urgent challenge to achieve prominent mechanical properties. In this study, we create a set of mechanically enhanced PA6/ABS blends using two multi-monomer melt-grafted compatibilizers, SEBSg-(MAH-co-St) and ABS-g-(MAH-co-St). The dispersed domain size is significantly decreased and meanwhile the unique "soft shell-encapsulating-hard core" structures form in the presence of compatibilizers. The optimum mechanical performances manifest an increase of 36% in tensile strength and an increase of 1300% in impact strength, compared with the neat PA6/ABS binary blend.