The reentry trajectory optimization for hypersonic vehicle(HV)is a current problem of great interest.Some complex constraints,such as waypoints for reconnaissance and no-fly zones for threat avoidance,are inevitably...The reentry trajectory optimization for hypersonic vehicle(HV)is a current problem of great interest.Some complex constraints,such as waypoints for reconnaissance and no-fly zones for threat avoidance,are inevitably involved in a global strike mission.Of the many direct methods,Gauss pseudospectral method(GPM)has been demonstrated as an effective tool to solve the trajectory optimization problem with typical constraints.However,a series of diffculties arises for complex constraints,such as the uncertainty of passage time for waypoints and the inaccuracy of approximate trajectory near no-fly zones.The research herein proposes a multi-phase technique based on the GPM to generate an optimal reentry trajectory for HV satisfying waypoint and nofly zone constraints.Three kinds of specifc breaks are introduced to divide the full trajectory into multiple phases.The continuity conditions are presented to ensure a smooth connection between each pair of phases.Numerical examples for reentry trajectory optimization in free-space flight and with complex constraints are used to demonstrate the proposed technique.Simulation results show the feasible application of multi-phase technique in reentry trajectory optimization with waypoint and no-fly zone constraints.展开更多
A supercomputer with 1.0 Petaflops peak performance in single precision, designed and established by Institute of Process Engineering, Chinese Academy of Sciences, is introduced in this brief communication. A designin...A supercomputer with 1.0 Petaflops peak performance in single precision, designed and established by Institute of Process Engineering, Chinese Academy of Sciences, is introduced in this brief communication. A designing philosophy utilizing the similarity between hardware, software and the problems to be solved is embodied, based on the multi-scale method and discrete simulation approaches developed at Institute of Process Engineering (IPE) and implemented in a graphic processing unit (GPU)-based hybrid computing mode. The preliminary applications of this machine in areas of multi-phase flow, molecular dynamics and so on are reported, demonstrating the supercomputer as a paradigm of green computation in new architecture.展开更多
To celebrate the 90th birthday of Professor Mooson Kwauk, who supervised the multi-scale research at this Institute in the last three decades, we dedicate this paper outlining our thoughts on this subject accumulated ...To celebrate the 90th birthday of Professor Mooson Kwauk, who supervised the multi-scale research at this Institute in the last three decades, we dedicate this paper outlining our thoughts on this subject accumulated from our previous studies. In the process of developing, improving and extending the energy- minimization multi-scale (EMMS) method, we have gradually recognized that meso-scales are critical to the understanding of the different kinds of multi-scale structures and systems. It is a common challenge not only for chemical engineering but also for almost all disciplines of science and engineering, due to its importance in bridging micro- and macro-behaviors and in displaying complexity and diversity. It is believed that there may exist a common law behind meso-scales of different problems, possibly even in different fields. Therefore, a breakthrough in the understanding of meso-scales will help materialize a revolutionary progress, with respect to modeling, computation and application.展开更多
Pseudo-particle modeling (PPM) is a particle method (PM) proposed in 1996. Though it is effective for the simulation of microscopic particle-fluid systems, its application to practical systems is still limited by comp...Pseudo-particle modeling (PPM) is a particle method (PM) proposed in 1996. Though it is effective for the simulation of microscopic particle-fluid systems, its application to practical systems is still limited by computational cost. In this note, we speed up the computation by using a combination of weighted averaging with finite difference techniques to upgrade the particle interactions to a fluid element level, which conforms to the Navier-Stokes equation. The approach, abbreviated to MaPPM, is then applied to the problem of one-dimensional Poiseuille flow with a quantitative comparison to the results of another related PM--smoothed particle hydrodynamics (SPH), where the accuracy and efficiency of MaPPM is found to be much better than that of SPH. Flows around a cylinder and multiple freely moving particles are also simulated with the new model, resulting in reasonable flow pattern and drag coefficient. The convergence and robustness of the algorithm prove promising.展开更多
This paper reviews recent progress made toward modeling of cavitation and numerical simulation of cavitating water jets. Properties of existing cavitation models are discussed and a compressible mixture flow method fo...This paper reviews recent progress made toward modeling of cavitation and numerical simulation of cavitating water jets. Properties of existing cavitation models are discussed and a compressible mixture flow method for the numerical simulation of high- speed water jets accompanied by intensive cavitation is introduced. Two-phase fluids media of cavitating flow are treated as a homo- geneous bubbly mixture and the mean flow is computed by solving Reynolds-Averaged Navier-Stokes (RANS) equations for com- pressible fluid. The intensity of cavitation is evaluated by the gas volume fraction, which is governed by the compressibility of bubble-liquid mixture corresponding to the status of mean flow field. Numerical results of cavitating water jet issuing from an orifice nozzle are presented and its applicability to intensively cavitating jets is demonstrated. However, the effect of impact pressure caused by collapsing of bubbles is neglected, and effectively coupling of the present compressible mixture flow method with the dynamics of bubbles remains to be a challenge.展开更多
基金supported by Aviation Science Foundation of China(No.2011ZC13001 and 2013ZA18001)National Natural Science Foundation of China(Nos:60975073,61273349,61175109 and 61203223)Innovation Foundation of BUAA for PhD Graduates
文摘The reentry trajectory optimization for hypersonic vehicle(HV)is a current problem of great interest.Some complex constraints,such as waypoints for reconnaissance and no-fly zones for threat avoidance,are inevitably involved in a global strike mission.Of the many direct methods,Gauss pseudospectral method(GPM)has been demonstrated as an effective tool to solve the trajectory optimization problem with typical constraints.However,a series of diffculties arises for complex constraints,such as the uncertainty of passage time for waypoints and the inaccuracy of approximate trajectory near no-fly zones.The research herein proposes a multi-phase technique based on the GPM to generate an optimal reentry trajectory for HV satisfying waypoint and nofly zone constraints.Three kinds of specifc breaks are introduced to divide the full trajectory into multiple phases.The continuity conditions are presented to ensure a smooth connection between each pair of phases.Numerical examples for reentry trajectory optimization in free-space flight and with complex constraints are used to demonstrate the proposed technique.Simulation results show the feasible application of multi-phase technique in reentry trajectory optimization with waypoint and no-fly zone constraints.
文摘A supercomputer with 1.0 Petaflops peak performance in single precision, designed and established by Institute of Process Engineering, Chinese Academy of Sciences, is introduced in this brief communication. A designing philosophy utilizing the similarity between hardware, software and the problems to be solved is embodied, based on the multi-scale method and discrete simulation approaches developed at Institute of Process Engineering (IPE) and implemented in a graphic processing unit (GPU)-based hybrid computing mode. The preliminary applications of this machine in areas of multi-phase flow, molecular dynamics and so on are reported, demonstrating the supercomputer as a paradigm of green computation in new architecture.
文摘To celebrate the 90th birthday of Professor Mooson Kwauk, who supervised the multi-scale research at this Institute in the last three decades, we dedicate this paper outlining our thoughts on this subject accumulated from our previous studies. In the process of developing, improving and extending the energy- minimization multi-scale (EMMS) method, we have gradually recognized that meso-scales are critical to the understanding of the different kinds of multi-scale structures and systems. It is a common challenge not only for chemical engineering but also for almost all disciplines of science and engineering, due to its importance in bridging micro- and macro-behaviors and in displaying complexity and diversity. It is believed that there may exist a common law behind meso-scales of different problems, possibly even in different fields. Therefore, a breakthrough in the understanding of meso-scales will help materialize a revolutionary progress, with respect to modeling, computation and application.
基金This work was supported by the National Key Program for Developing Basic Sciences (Grant No. Gl 999032801).
文摘Pseudo-particle modeling (PPM) is a particle method (PM) proposed in 1996. Though it is effective for the simulation of microscopic particle-fluid systems, its application to practical systems is still limited by computational cost. In this note, we speed up the computation by using a combination of weighted averaging with finite difference techniques to upgrade the particle interactions to a fluid element level, which conforms to the Navier-Stokes equation. The approach, abbreviated to MaPPM, is then applied to the problem of one-dimensional Poiseuille flow with a quantitative comparison to the results of another related PM--smoothed particle hydrodynamics (SPH), where the accuracy and efficiency of MaPPM is found to be much better than that of SPH. Flows around a cylinder and multiple freely moving particles are also simulated with the new model, resulting in reasonable flow pattern and drag coefficient. The convergence and robustness of the algorithm prove promising.
基金supported by the Japan Society for the Promotion of Science (JSPS), Grant-in-Aid for Scientific Research (C) (Grant No. 22560177)
文摘This paper reviews recent progress made toward modeling of cavitation and numerical simulation of cavitating water jets. Properties of existing cavitation models are discussed and a compressible mixture flow method for the numerical simulation of high- speed water jets accompanied by intensive cavitation is introduced. Two-phase fluids media of cavitating flow are treated as a homo- geneous bubbly mixture and the mean flow is computed by solving Reynolds-Averaged Navier-Stokes (RANS) equations for com- pressible fluid. The intensity of cavitation is evaluated by the gas volume fraction, which is governed by the compressibility of bubble-liquid mixture corresponding to the status of mean flow field. Numerical results of cavitating water jet issuing from an orifice nozzle are presented and its applicability to intensively cavitating jets is demonstrated. However, the effect of impact pressure caused by collapsing of bubbles is neglected, and effectively coupling of the present compressible mixture flow method with the dynamics of bubbles remains to be a challenge.